6 research outputs found

    Coastal Aquifer Salinization in Semi-Arid Regions: The Case of Grombalia (Tunisia)

    Get PDF
    Groundwater resources are facing increasing pressure especially in semi-arid regions where they often represent the main freshwater resource to sustain human needs. Several aquifers in the Mediterranean basin suffer from salinization and quality degradation. This study provides an assessment of Grombalia coastal aquifer (Tunisia) based on multidisciplinary approach that combines chemical and isotopic (δ2H, δ18O, 3H, 14C and δ13C) methods to characterize the relation between groundwater quality variation and aquifer recharge. The results indicate that total dissolved solids exceed 1000 mg/L in the most of samples excepting the recharge area. In addition to water–rock interaction, evaporation and nitrate pollution contributing to groundwater mineralization, the reverse cation exchange process constitute an important mechanism controlling groundwater mineralization with enhancing risk of saltwater intrusion. Environmental isotope tracers reveal that groundwater is evolving within an open system to close system. A significant component of recent water that is recharging Grombalia aquifer system is confirmed by applying correction models based on the δ13C values and 14C activities and tritium contents. However, this recharge, which is mainly associated to the return flow of irrigation water, contributes to the groundwater salinization, especially for the shallow aquifer

    Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia)

    No full text
    As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ18O, δ2H and 3H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization

    Assessing seasonal variations and aquifer vulnerability in coastal aquifers of semi-arid regions using a multi-tracer isotopic approach: the case of Grombalia (Tunisia)

    No full text
    The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3 > 50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity
    corecore