384 research outputs found

    Metformin Induces Different Responses in Clear Cell Renal Cell Carcinoma Caki Cell Lines.

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is the most common and lethal form of urological cancer diagnosed globally. Mutations of the von Hippel-Lindau tumor-suppressor gene and the resultant overexpression of hypoxia-inducible factor (HIF)-1α protein are considered hallmarks of ccRCC. Persistently activated HIF-1α is associated with increased cell proliferation, angiogenesis, and epithelial⁻mesenchymal transition (EMT), consequently leading to ccRCC progression and metastasis to other organs. However, the status alone cannot predict the differential sensitivity of ccRCC to cancer treatments, which suggests that other molecular differences may contribute to the differential response of ccRCC cells to drug therapies. In this study, we investigated the response to metformin (an antidiabetic drug) of two human ccRCC cell lines Caki-1 and Caki-2, which express wild-type . Our findings demonstrate a differential response between the two ccRCC cell lines studied, with Caki-2 cells being more sensitive to metformin compared to Caki-1 cells, which could be linked to the differential expression of HIF-1 despite both cell lines carrying a wild-type . Our study unveils the therapeutic potential of metformin to inhibit the progression of ccRCC in vitro. Additional preclinical and clinical studies are required to ascertain the therapeutic efficacy of metformin against ccRCC.Qatar University grants QUUG-CPH\2017-2 and QUCG-CPH-2018\2019-

    Phytochemicals in Cancer Prevention and Therapy

    Get PDF
    Despite advances in modern medicine, cancer is still the major cause of mortality in both developing and developed countries. Search for safer and more effective chemoprevention and treatment strategy is a need for the improvement of patient care in the field. Prevention may be more effective and less costly because cancer is largely a preventable disease which could be attributed to a greater extent to lifestyle. Dietary phytochemicals have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Population based studies suggest that a reduced risk of cancer is associated with high consumption of vegetables and fruits. Promising phytochemicals not only disrupt aberrant signaling pathways leading to cancer but also synergize with chemotherapy and radiotherapy. Thus, the cancer chemoprevention and therapeutic potential of naturally occurring phytochemicals are of great interest. In this special issue we have collected many interesting original research articles and reviews that provide solid evidence to support the application of phytochemicals or dietary agents in prevention and treatment of cancer

    Protein expression profiling identifies key proteins and pathways involved in growth inhibitory effects exerted by guggulsterone in human colorectal cancer cells

    Get PDF
    Colorectal cancer (CRC) is a leading killer cancer worldwide and one of the most common malignancies with increasing incidences of mortality. Guggulsterone (GS) is a plant sterol used for treatment of various ailments such as obesity, hyperlipidemia, diabetes, and arthritis. In the current study, anti-cancer effects of GS in human colorectal cancer cell line HCT 116 was tested, potential targets identified using mass spectrometry-based label-free shotgun proteomics approach and key pathways validated by proteome profiler antibody arrays. Comprehensive proteomic profiling identified 14 proteins as significantly dysregulated. Proteins involved in cell proliferation/migration, tumorigenesis, cell growth, metabolism, and DNA replication were downregulated while the protein with functional role in exocytosis/tumor suppression was found to be upregulated. Our study evidenced that GS treatment altered expression of Bcl-2 mediated the mitochondrial release of cytochrome c which triggered the formation of apoptosome as well as activation of caspase-3/7 leading to death of HCT 116 cells via intrinsic apoptosis pathway. GS treatment also induced expression of p53 protein while p21 expression was unaltered with no cell cycle arrest. In addition, GS was found to inhibit NF-kB signaling in colon cancer cells by quelling the expression of its regulated gene products Bcl-2, cIAP-1, and survivin. - 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This study was funded by MEDICAL RESEARCH CENTER (MRC) at HAMAD MEDICAL CORPORATION, Doha, State of Qatar with grant number MRC#15264/15.Scopu

    Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model

    Get PDF
    Multiple myeloma (MM) is a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow. With the advent of novel targeted agents, the median survival rate has increased to 5 -7 years. However, majority of patients with myeloma suffer relapse or develop chemoresistance to existing therapeutic agents. Thus, there is a need to develop novel alternative therapies for the treatment of MM. Thus in the present study, we investigated whether thymoquinone (TQ), a bioactive constituent of black seed oil, could suppress the proliferation and induce chemosensitization in human myeloma cells and xenograft mouse model. Our results show that TQ inhibited the proliferation of MM cells irrespective of their sensitivity to doxorubicin, melphalan or bortezomib. Interestingly, TQ treatment also resulted in a significant inhibition in the proliferation of CD138+ cells isolated from MM patient samples in a concentration dependent manner. TQ also potentiated the apoptotic effects of bortezomib in various MM cell lines through the activation of caspase-3, resulting in the cleavage of PARP. TQ treatment also inhibited chemotaxis and invasion induced by CXCL12 in MM cells. Furthermore, in a xenograft mouse model, TQ potentiated the antitumor effects of bortezomib (p < 0.05, vehicle versus bortezomib + TQ; p < 0.05, bortezomib versus bortezomib + TQ), and this correlated with modulation of various markers for survival and angiogenesis, such as Ki-67, vascular endothelial growth factor (VEGF), Bcl-2 and p65 expression. Overall, our results demonstrate that TQ can enhance the anticancer activity of bortezomib in vitro and in vivo and may have a substantial potential in the treatment of MM

    Synthesis and biological evaluation of tetrahydropyridinepyrazoles ('PFPs') as inhibitors of STAT3 phosphorylation

    Get PDF
    The transcription factor STAT3 is constitutively overexpressed in many human tumors and hence represents a putative target for anticancer drug design. In this work, we describe the synthesis and biological evaluation of a novel chemotype, pyridine-fused pyrazoles ('PFPs') as inhibitors of STAT3 phosphorylation. The effect of the compounds synthesized was evaluated in cell proliferation assays of MCF-7 and HepG2 cancer cell lines and two of the compounds tested (12g and 12k) were found to show significant activity. Both compounds were also found to inhibit the proliferation of Hep3B, HUH-7 and PLC/PRF5 HCC cells in a dose-and time-dependent manner. Furthermore, we established in a DNA binding assay that one of the compounds (12g) was able to significantly inhibit the DNA binding ability of STAT3. Cytotoxicity of 12g against PC3 cells, which do not constitutively phosphorylate STAT3, was found to be minimal, hence lending further support for our mode-of-action hypothesis of this compound. We established for this structure a complete inhibition of CXCL12-induced cell invasion and associated wound healing in HCCLM3 cells, corroborating the proposed modulation of the STAT3 axis by 12g. Finally, molecular modeling was employed to evaluate the hypothesis of PFPs to bind to the SH2 domain of STAT3. Given the efficacy of PFPs in the biological systems studied here we propose their further evaluation in the context of STAT3-mediated cancer therapy

    Synthesis, biological evaluation and in silico and in vitro mode-of-action analysis of novel dihydropyrimidones targeting PPAR-gamma

    Get PDF
    Hepatocellular carcinoma, a fatal liver cancer, affects 600 000 people annually and ranks third in cancer-related lethality. In this work we report the synthesis and related biological activity of novel dihydropyrimidones. Among the tested compounds, 5-acetyl-4-(1H-indol- 3-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (4g) was found to be most active towards the HepG2 cell line (IC50 = 17.9 mu M), being at the same time 7.6-fold selective over normal (LO2) liver cells (IC50 = 136.9 mu M). Subsequently, we identified peroxisome proliferator-activated receptor gamma as a target of compound 4g using an in silico approach, and confirmed this mode-of-action experimentally

    Lipids and insulin regulate mitochondrial-derived peptide (MOTS-c) in PCOS and healthy subjects

    Get PDF
    Objective: Polycystic ovarian syndrome (PCOS) is a heterogeneous endocrine disorder associated with mitochondrial dysfunction and insulin resistance (IR). MOTS-c, a mitochondrial peptide, promotes insulin sensitivity (IS) through activating AKT and AMPK-dependent pathways. The current study was designed to examine the response of MOTS-c to lipids (intralipid) followed by insulin in PCOS and healthy subjects. Methods: All subjects underwent 5-hour intralipid/saline infusion with a hyperinsulinemic-euglycaemic clamp in the final 2 hours. Plasma samples were collected to measure circulating MOTS-c using a commercial ELISA kit. Subsequently, this was repeated following an eight-week exercise intervention. Results: Intralipid significantly increased plasma MOTS-c both in controls and PCOS subjects, whilst the insulin infusion blunted the intralipid-induced response seen for both lipids and MOT-c. Intralipid elevated plasma MOTS-c to 232±124% of basal in control (P < 0.01) and to 349 ± 206% of basal in PCOS (P < 0.001) subjects. Administration of insulin suppressed intralipid-induced MOTS-c from 232 ± 124% to 165 ± 97% (NS) in control and from 349 ± 206% to 183 ± 177% (P < 0.05) in PCOS subjects, respectively. Following exercise, intralipid elevated plasma MOTS-c to 305 ± 153% of basal in control (P < 0.01) and to 215 ± 103% of basal in PCOS (P < 0.01) subjects; insulin suppressed intralipid-induced MOTS-c only in controls.ConclusionsIn conclusion, this is the first study to show increased lipid enhanced circulating MOTS-c whilst insulin attenuated the MOTS-c response in human. Further, eight weeks of moderate exercise training did not show any changes in circulating MOTS-c levels in healthy controls and in women with PCOS

    Novel synthetic coumarins that targets NF-κB in Hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor worldwide, and is the third most common cause of cancer related death. Constitutive activation of NF-κB is the underlying mechanism behind tumorigenesis and this protein regulates the expression of genes involved in proliferation, survival, drug resistance, angiogenesis and metastasis. The design of inhibitors which suppress NF-κB activation is therefore of great therapeutic importance in the treatment of HCC. In this study, we investigated the effect of newly synthesized coumarin derivatives against HCC cells, and identified (7-Carbethoxyamino-2-oxo-2. H-chromen-4-yl)methylpyrrolidine-1 carbodithioate (CPP) as lead compound. Further, we evaluated the effect of CPP on the DNA binding ability of NF-κB, CXCL12-induced cell migration and invasion, and the regulated gene products in HCC cells. We found that CPP induced cytotoxicity in three HCC cells in a time and dose dependent manner, and suppressed the DNA binding ability of NF-κB. CPP significantly decreased the CXCL12-induced cell migration and invasion. More evidently, CPP inhibits the expression of NF-κB targeted genes such as cyclin D1, Bcl-2, survivin, MMP12 and C-Myc. Furthermore, the molecular docking analysis suggested that CPP interacts with the p50 binding domain of the p65 subunit, scoring best among the 26 docked coumarin derivatives of this study. Thus, we are reporting CPP as a potent inhibitor of the pro-inflammatory pathway in Hepatocellular carcinoma. © 2014 Elsevier Ltd

    Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species.

    Get PDF
    Sanguinarine (SNG), a natural compound with an array of pharmacological activities, has promising therapeutic potential against a number of pathological conditions, including malignancies. In the present study, we have investigated the antiproliferative potential of SNG against two well-characterized papillary thyroid cancer (PTC) cell lines, BCPAP and TPC-1. SNG significantly inhibited cell proliferation of PTC cells in a dose and time-dependent manner. Western blot analysis revealed that SNG markedly attenuated deregulated expression of p-STAT3, without affecting total STAT3, and inhibited growth of PTC via activation of apoptotic and autophagy signaling cascade, as SNG treatment of PTC cells led to the activation of caspase-3 and caspase-8; cleavage of PARP and activation of autophagy markers. Further, SNG-mediated anticancer effects in PTC cells involved the generation of reactive oxygen species (ROS) as N-acetyl cysteine (NAC), an inhibitor of ROS, prevented SNG-mediated antiproliferative, apoptosis and autophagy inducing action. Interestingly, SNG also sensitized PTC cells to chemotherapeutic drug cisplatin, which was inhibited by NAC. Finally, SNG suppressed the growth of PTC thyrospheres and downregulated stemness markers ALDH2 and SOX2. Altogether, the findings of the current study suggest that SNG has anticancer potential against PTC cells as well its derived cancer stem-like cells, most likely via inactivation of STAT3 and its associated signaling molecules

    Dynamic Changes in Circulating Endocrine FGF19 Subfamily and Fetuin-A in Response to Intralipid and Insulin Infusions in Healthy and PCOS Women

    Get PDF
    © Copyright © 2020 Ramanjaneya, Bensila, Bettahi, Jerobin, Samra, Aye, Alkasem, Siveen, Sathyapalan, Skarulis, Atkin and Abou-Samra. Background: The fibroblast growth factors (FGF) 19 subfamily, also referred to as endocrine FGFs, includes FGF19, FGF21, and FGF23 are metabolic hormones involved in the regulation of glucose and lipid metabolism. Fetuin-A is a hepatokine involved in the regulation of beta-cell function and insulin resistance. Endocrine FGFs and fetuin-A are dysregulated in metabolic disorders including obesity, type 2 diabetes, non-alcoholic fatty liver disease and polycystic ovary syndrome (PCOS). Our study was designed to examine the response of endocrine FGFs and fetuin-A to an acute intralipid, insulin infusion and exercise in PCOS and healthy women. Subjects and Measurements: Ten healthy and 11 PCOS subjects underwent 5-h saline infusions with a hyperinsulinemic-euglycemic clamp (HIEC) performed during the final 2 h. One week later, intralipid infusions were undertaken with a HIEC performed during the final 2 h. After an 8 week of exercise intervention the saline, intralipid, and HIEC were repeated. Plasma levels of endocrine FGFs and fetuin-A were measured. Results: Baseline fetuin-A was higher in PCOS women but FGF19, FGF21, and FGF23 did not differ and were unaffected by exercise. Insulin administration elevated FGF21 in control and PCOS, suppressed FGF19 in controls, and had no effects on FGF23 and fetuin-A. Intralipid infusion suppressed FGF19 and increased FGF21. Insulin with intralipid synergistically increased FGF21 and did not have effects on lipid-mediated suppression of FGF19 in both groups. Conclusion: Our study provides evidence for insulin and lipid regulation of endocrine FGFs in healthy and PCOS women, suggesting that FGF family members play a role in lipid and glucose metabolism. Clinical Trial Registration: www.isrctn.org, Identifier: ISRCTN42448814
    corecore