77 research outputs found

    In vitro antioxidant activity of Vetiveria zizanioides root extract

    Get PDF
    Free radicals induce numerous diseases by lipid peroxidation and DNA damage. It has been reported that some of the extracts from plants possess antioxidant properties capable of scavenging free radicals in vivo. Vetiveria zizanioides belonging to the family Gramineae, is a densely tufted grass which is widely used as a traditional plant for aromatherapy, to relieve stress, anxiety, nervous tension and insomnia. In this regard, the roots of V. zizanioides was extracted with ethanol and used for the evaluation of various in vitro antioxidant activities such as reducing power ability, superoxide anion radical scavenging activity, deoxyribose degradation assay, total antioxidant capacity, total phenolics and total flavonoid composition. The various antioxidant activities were compared with suitable antioxidants such as butyl hydroxy toluene, ascorbic acid, quercetin, alpha tocopherol, pyrocatechol and curcumin respectively. The generation of free radicals O2-, H2O2, OH and NO were effectively scavenged by the ethanolic extract of V.zizanioides. In all these methods, the extract showed strong antioxidant activity in a dose dependent manner. The results obtained in the present study clearly indicates that V. zizanioides scavenges free radicals, ameliorating damage imposed by oxidative stress in different disease conditions and serve as a potential source of natural antioxidant. The study provides a proof for the ethnomedical claims and reported biological activities. The plant has, therefore, very good therapeutic and antioxidant potential

    Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers

    Get PDF
    The present investigation was aimed to study the antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of the root of Sphaeranthus indicus Linn. in streptozotocin- (STZ-) induced type 1 diabetic rats. Administration of ethanolic extract of Sphaeranthus indicus root (EESIR) 100 and 200 mg/kg to the STZ-induced diabetic rats showed significant (P < .01) reduction in blood glucose and increase in body weight compared to diabetic control rats. Both the doses of EESIR-treated diabetic rats showed significant (P < .01) alteration in elevated lipid profile levels than diabetic control rats. The EESIR treatment in diabetic rats produced significant increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and decrease in thiobarbituric acid reactive substances (TBARS) levels than diabetic control rats. Administration of EESIR 200 mg/kg produced significant (P < .01) higher antioxidant activity than EESIR 100 mg/kg. The high performance liquid chromatography (HPLC) analysis of EESIR revealed the presence of biomarkers gallic acid and quercetin. In conclusion, EESIR possess antidiabetic, antihyperlipidemic, and in vivo antioxidant activity in type 1 diabetic rats. Its antioxidant and lipid lowering effect will help to prevent diabetic complications, and these actions are possibly due to presence of above biomarkers

    Primate epididymis-specific proteins: characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human

    Get PDF
    Epididymal secreted proteins promote sperm maturation and fertilizing capacity by interacting with sperm during passage through the epididymis. Here we investigate the molecular basis of sperm maturation by isolating cDNA clones for novel epididymis-specific expressed sequences. Thirty-six novel cDNAs were isolated and sequenced from a subtracted Macaca mulatta epididymis library. The clones encode proteins with a range of motifs characteristic of protein-modifying enzymes, protease inhibitors, hydrophobic ligand-binding and transport proteins, extracellular matrix-interacting proteins, and transcription regulatory factors. The full length coding sequences were obtained for 11 clones representing a range of abundance levels. Expression of each is regionally localized and androgen regulated. The most abundant, ESC42, contains a cysteine-rich region similar to the signature binding domain of the trefoil family of motogenic wound repair proteins. The monkey and human proteins are nearly 90% identical. Immunohistochemical staining revealed that the protein is most abundant in the epithelium of the caput and is also present in the lumen and bound to sperm. The ESC42 gene, located on chromosome 20q11, contains two exons encoding two nearly identical predicted signal peptides and a third exon encoding the rest of the protein

    Analytical Study of Base Isolation- A Review

    Get PDF
    Now a days the rate of happening of seismic events increasing and due to that so many structures got collapsed or damaged. In order to reduce the damage to structures during earthquakes, now a days the base isolation system is widely adopted and used over the world. This paper makes a wide review on the various base isolation techniques adopted and used. Different types of isolating bearings and materials used in it are reviewed. Here the review is done for the isolation system in normal R.C buildings (regular and irregular in plan) and also for bridges. The effect of base isolation system on some historic structures is also reviewed. The various advantages and disadvantages of different isolating bearings are reviewed. Here the effect of temperature on some isolating devices are also reviewed

    Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis

    Get PDF
    The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca 2+ -binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp-Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.We gratefully acknowledge Karsta Barnekow and Kristine Sievert-Giermann, for technical assistance and Lothar Petruschka for in silico analysis (all Dept. of Genetics, University of Greifswald). We are further grateful to the staff from SLS synchrotron beamline for help in data collection. This work was supported by grants from the Deutsche Forschungsgemeinschaft DFG GRK 1870 (to SH) and the Spanish Ministry of Economy and Competitiveness (BFU2014-59389-P to JAH, CTQ2014-52633-P to MB and SAF2012-39760-C02-02 to FG) and S2010/BMD- 2457 (Community of Madrid to JAH and FG).Peer Reviewe

    Identifying and Validating Tankyrase Binders and Substrates: A Candidate Approach.

    Get PDF
    The poly(ADP-ribose)polymerase (PARP) enzyme tankyrase (TNKS/ARTD5, TNKS2/ARTD6) uses its ankyrin repeat clusters (ARCs) to recognize degenerate peptide motifs in a wide range of proteins, thereby recruiting such proteins and their complexes for scaffolding and/or poly(ADP-ribosyl)ation. Here, we provide guidance for predicting putative tankyrase-binding motifs, based on the previously delineated peptide sequence rules and existing structural information. We present a general method for the expression and purification of tankyrase ARCs from Escherichia coli and outline a fluorescence polarization assay to quantitatively assess direct ARC-TBM peptide interactions. We provide a basic protocol for evaluating binding and poly(ADP-ribosyl)ation of full-length candidate interacting proteins by full-length tankyrase in mammalian cells
    corecore