19 research outputs found

    Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Get PDF
    BackgroundWe previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information.Methodology/Principal FindingsHere, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (KD = 1.605×10?6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition.ConclusionsThe results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted

    Homology modeling, molecular dynamics and atomic level interaction study of snake venom 5′ nucleotidase

    No full text
    Abstract 5′ Nucleotidase (5′ NUC) is a ubiquitously distributed enzyme known to be present in snake venoms (SV) that is responsible primarily for causing dysregulation of physiological homeostasis in humans by inducing anticoagulant effects and by inhibiting platelet aggregation. It is also known to act synergistically with other toxins to exert a more pronounced anti-coagulant effect during envenomation. Its structural and functional role is not yet ascertained clearly. The 3D structure of snake venom 5′ nucleotidase (SV-5′ NUC) is not yet known and was predicted by us for the first time using a comparative homology modeling approach using Demansia vestigiata protein sequence. The accuracy and stability of the predicted SV-5′ NUC structure were validated using several computational approaches. Key interactions of SV-5′ NUC were studied using experimental studies/molecular docking analysis of the inhibitors vanillin, vanillic acid and maltol. All these inhibitors were found to dock favorably following pharmacologically relevant absorption, distribution, metabolism and excretion (ADME) profiles. Further, atomic level docking interaction studies using inhibitors of the SV-5′ NUC active site revealed amino acid residues Y65 and T72 as important for inhibitor–(SV-5′ NUC) interactions. Our in silico analysis is in good agreement with experimental inhibition results of SV-5′ NUC with vanillin, vanillic acid and maltol. The present study should therefore play a guiding role in the experimental design of new SV-5′ NUC inhibitors for snake bite management. We also identified a few pharmacophoric features essential for SV-5′ NUC inhibitory activity that can be utilized further for the discovery of putative anti-venom agents of therapeutic value for snake bite management
    corecore