305 research outputs found

    Performance of Diesel Engines at High Altitudes

    Get PDF
    Problems are encountered when conventional, normally aspirated diesel engines are operated at high altitudes. The results of a study carried out at the Indian Institute of Petroleum both on stationary and automotive diesel engines covering the principal problems of power loss and poor thermal efficiency are presented in this paper

    Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System

    Get PDF
    This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor’s surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA)

    An experimental study of the elastic properties of dragonfly-like flapping wings for use in Biomimetic Micro Air Vehicles (BMAV)

    Get PDF
    This article studies the elastic properties of several biomimetic micro air vehicle (BMAV) wings that are based on a dragonfly wing. BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wing motion of flying biological organisms (e.g., insects, birds, and bats). Three structurally identical wings were fabricated using different materials: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and acrylic. Simplified wing frame structures were fabricated from these materials and then a nanocomposite film was adhered to them which mimics the membrane of an actual dragonfly. These wings were then attached to an electromagnetic actuator and passively flapped at frequencies of 10–250 Hz. A three-dimensional high frame rate imaging system was used to capture the flapping motions of these wings at a resolution of 320 pixels × 240 pixels and 35000 frames per second. The maximum bending angle, maximum wing tip deflection, maximum wing tip twist angle, and wing tip twist speed of each wing were measured and compared to each other and the actual dragonfly wing. The results show that the ABS wing has considerable flexibility in the chordwise direction, whereas the PLA and acrylic wings show better conformity to an actual dragonfly wing in the spanwise direction. Past studies have shown that the aerodynamic performance of a BMAV flapping wing is enhanced if its chordwise flexibility is increased and its spanwise flexibility is reduced. Therefore, the ABS wing (fabricated using a 3D printer) shows the most promising results for future applications

    Predicting electronic structures at any length scale with machine learning

    Full text link
    The properties of electrons in matter are of fundamental importance. They give rise to virtually all molecular and material properties and determine the physics at play in objects ranging from semiconductor devices to the interior of giant gas planets. Modeling and simulation of such diverse applications rely primarily on density functional theory (DFT), which has become the principal method for predicting the electronic structure of matter. While DFT calculations have proven to be very useful to the point of being recognized with a Nobel prize in 1998, their computational scaling limits them to small systems. We have developed a machine learning framework for predicting the electronic structure on any length scale. It shows up to three orders of magnitude speedup on systems where DFT is tractable and, more importantly, enables predictions on scales where DFT calculations are infeasible. Our work demonstrates how machine learning circumvents a long-standing computational bottleneck and advances science to frontiers intractable with any current solutions. This unprecedented modeling capability opens up an inexhaustible range of applications in astrophysics, novel materials discovery, and energy solutions for a sustainable future

    Existence and Stability of Symmetric Periodic Simultaneous Binary Collision Orbits in the Planar Pairwise Symmetric Four-Body Problem

    Full text link
    We extend our previous analytic existence of a symmetric periodic simultaneous binary collision orbit in a regularized fully symmetric equal mass four-body problem to the analytic existence of a symmetric periodic simultaneous binary collision orbit in a regularized planar pairwise symmetric equal mass four-body problem. We then use a continuation method to numerically find symmetric periodic simultaneous binary collision orbits in a regularized planar pairwise symmetric 1, m, 1, m four-body problem for mm between 0 and 1. Numerical estimates of the the characteristic multipliers show that these periodic orbits are linearly stability when 0.54m10.54\leq m\leq 1, and are linearly unstable when 0<m0.530<m\leq0.53.Comment: 6 figure

    Addressing healthcare needs of people living below the poverty line: a rapid assessment of the Andhra Pradesh Health Insurance Scheme

    Get PDF
    BACKGROUND: Families living below the poverty line in countries which do not have universal healthcare coverage are drawn into indebtedness and bankruptcy. The state of Andhra Pradesh in India established the Rajiv Aarogyasri Community Health Insurance Scheme (RACHIS) in 2007 with the aim of breaking this cycle by improving the access of below the poverty line (BPL) families to secondary and tertiary healthcare. It covered a wide range of surgical and medical treatments for serious illnesses requiring specialist healthcare resources not always available at district-level government hospitals. The impact of this scheme was evaluated by a rapid assessment, commissioned by the government of Andhra Pradesh. The aim of the assessment was to explore the contribution of the scheme to the reduction of catastrophic health expenditure among the poor and to recommend ways by which delivery of the scheme could be improved. We report the findings of this assessment. METHODS: Two types of data were used for the assessment. Patient data pertaining to 89 699 treatment requests approved by the scheme during its first 18 months were examined. Second, surveys of scheme beneficiaries and providers were undertaken in 6 randomly selected districts of Andhra Pradesh. RESULTS: This novel scheme was beginning to reach the BPL households in the state and providing access to free secondary and tertiary healthcare to seriously ill poor people. CONCLUSION: An integrated model encompassing primary, secondary and tertiary care would be of greater benefit to families below the poverty line and more cost-effective for the government. There is considerable potential for the government to build on this successful start and to strengthen equity of access and the quality of care provided by the scheme

    Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing

    Get PDF
    Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes for each bulk population of cells were generated by RNA-seq with 10,974 expressed genes detected. Pairwise comparisons between cell types revealed specific expression, while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes (SEG) showed high enrichment of biological processes related to the nature of each cell type. Comparison of gene expression indicated highly significant correlations between pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia. Second, higher resolution of distinct cell populations was obtained by single-cell RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and sequenced that produced 28,810 single cell transcriptomes distributed across 36 clusters and classified into 13 general cell types including plasmacytoid dendritic cells (DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αβ T-cells, NK cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were assessed for relative enrichment in genes expressed in pig cells and integration of pig scRNA-seq with a public human scRNA-seq dataset provided further validation for similarity between human and pig data. The sorted porcine bulk RNAseq dataset informed classification of scRNA-seq PBMC populations; specifically, an integration of the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and well-validated transcriptomic data from sorted PBMC populations and the first single-cell transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of pig genes controlling immunogenetic traits as part of the porcine Functional Annotation of Animal Genomes (FAANG) project, as well as further study of, and development of new reagents for, porcine immunology
    corecore