15 research outputs found

    COMPUTATIONAL GENOMIC MODELS FOR SPATIO-TEMPORAL INVESTIGATION OF EARLY LUNG CANCER PATHOLOGY

    Get PDF
    Lung cancer, of which non-small cell lung cancer (NSCLC) is the most common form, is the second most prevalent cancer and the leading cause of cancer-related deaths. NSCLCs primarily comprise adenocarcinomas (LUAD) and squamous cell carcinomas (LUSC). Advances in early detection and prevention have been limited by the lack of early-stage biomarkers and targets. A comprehensive molecular characterization of premalignant lesions and tumor-adjacent normal tissue can aid in better understanding NSCLC pathogenesis. However, these investigations are further challenged by limited tissue availability and low cellular fractions of detectable somatic mutations. Therefore, there is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor to LUADs. We performed a cross-platform integrative analysis comprising targeted DNA sequencing, genotype array profiling and transcriptome sequencing of matched AAHs, LUADs and normal tissues from 23 early-stage patients. The study revealed potentially divergent pathways based on the mutation status of AAH (BRAF vs KRAS), recurrent chromosomal aberrations (17p loss) and the presence of immune deregulation early in the pathogenesis of AAHs. Molecular changes, characteristic of NSCLCs, might also occur in normal tissues, preceding identifiable premalignancy-associated morphological changes. We sought to comprehensively survey the somatic mutational architecture of the normal airway in early-stage NSCLCs. Targeted DNA sequencing allowed us to capture driver mutations at low cellular fractions, typical of these non-malignant tissues. Additionally, genotype array profiling helped characterize subtle chromosomal aberrations in these tissues. This multi-region study included tumor-adjacent and -distant airways, nasal epithelia and uninvolved normal lung (collectively cancerized field) along with matched multi-region NSCLCs and blood cells from 48 patients. Integrative computational analysis revealed genomic airway field carcinogenesis in 52% of cases. The airway field exhibited mutations in known drivers, that were present at lower frequencies compared to NSCLCs, suggestive of selection-driven clonal expansion. These driver events also comprised somatic “two-hit” alterations in matched airway field and NSCLCs. Our study design offers spatiotemporal insights into NSCLC development and suggests potential targets for early detection and treatment, in possibly less hostile environments of premalignancy. To validate and enhance the utility of the bioinformatic techniques devised and implemented for these investigations, I also provide methods to expand such analyses across multiple tumor sites

    ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer.

    Get PDF
    c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials

    ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer

    Full text link
    c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials. Keywords: ROS1 rearrangement; acquired resistance; colorectal cancer; crizotinib; molecular subgroups; precision treatmen

    Intra-patient stability of tumor mutational burden from tissue biopsies at different time points in advanced cancers

    No full text
    BackgroundTumor mutational burden (TMB) may be a predictive biomarker of immune checkpoint inhibitor (ICI) responsiveness. Genomic landscape heterogeneity is a well-established cancer feature. Molecular characteristics may differ even within the same tumor specimen and undoubtedly evolve with time. However, the degree to which TMB differs between tumor biopsies within the same patient has not been established.MethodsWe curated data on 202 patients enrolled in the PREDICT study (NCT02478931), seen at the University of California San Diego (UCSD), who had 404 tissue biopsies for TMB (two per patient, mean of 722 days between biopsies) to assess difference in TMB before and after treatment in a pan-cancer cohort. We also performed an orthogonal analysis of 2872 paired pan-solid tumor biopsies in the Foundation Medicine database to examine difference in TMB between first and last biopsies.ResultsThe mean (95% CI) TMB difference between samples was 0.583 [- 0.900-2.064] (p = 0.15). Pearson correlation showed a flat line for time elapsed between biopsies versus TMB change indicating no correlation (R2 = 0.0001; p = 0.8778). However, in 55 patients who received ICIs, there was an increase in TMB (before versus after mean mutations/megabase [range] 12.50 [range, 0.00-98.31] versus 14.14 [range, 0.00-100.0], p = 0.025). Analysis of 2872 paired pan-solid tumor biopsies in the Foundation Medicine database also indicated largely stable TMB patterns; TMB increases were only observed in specific tumors (e.g., breast, colorectal, glioma) within certain time intervals.ConclusionsOverall, our results suggest that tissue TMB remains stable with time, though specific therapies such as immunotherapy may correlate with an increase in TMB.Trial registrationNCT02478931 , registered June 23, 2015

    Strategies for identification of somatic variants using the Ion Torrent deep targeted sequencing platform

    No full text
    Abstract Background ‘Next-generation’ (NGS) sequencing has wide application in medical genetics, including the detection of somatic variation in cancer. The Ion Torrent-based (IONT) platform is among NGS technologies employed in clinical, research and diagnostic settings. However, identifying mutations from IONT deep sequencing with high confidence has remained a challenge. We compared various computational variant-calling methods to derive a variant identification pipeline that may improve the molecular diagnostic and research utility of IONT. Results Using IONT, we surveyed variants from the 409-gene Comprehensive Cancer Panel in whole-section tumors, intra-tumoral biopsies and matched normal samples obtained from frozen tissues and blood from four early-stage non-small cell lung cancer (NSCLC) patients. We used MuTect, Varscan2, IONT’s proprietary Ion Reporter, and a simple subtraction we called “Poor Man’s Caller.” Together these produced calls at 637 loci across all samples. Visual validation of 434 called variants was performed, and performance of the methods assessed individually and in combination. Of the subset of inspected putative variant calls (n=223) in genomic regions that were not intronic or intergenic, 68 variants (30%) were deemed valid after visual inspection. Among the individual methods, the Ion Reporter method offered perhaps the most reasonable tradeoffs. Ion Reporter captured 83% of all discovered variants; 50% of its variants were visually validated. Aggregating results from multiple packages offered varied improvements in performance. Conclusions Overall, Ion Reporter offered the most attractive performance among the individual callers. This study suggests combined strategies to maximize sensitivity and positive predictive value in variant calling using IONT deep sequencing

    Multiple PIK3CA mutation clonality correlates with outcomes in taselisib + fulvestrant-treated ER+/HER2–, PIK3CA-mutated breast cancers

    No full text
    Abstract Background Mutations in the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), encoded by the PIK3CA gene, cause dysregulation of the PI3K pathway in 35–40% of patients with HR+/HER2– breast cancer. Preclinically, cancer cells harboring double or multiple PIK3CA mutations (mut) elicit hyperactivation of the PI3K pathway leading to enhanced sensitivity to p110α inhibitors. Methods To understand the role of multiple PIK3CAmut in predicting response to p110α inhibition, we estimated the clonality of multiple PIK3CAmut in circulating tumor DNA (ctDNA) from patients with HR+/HER2– metastatic breast cancer enrolled to a prospectively registered clinical trial of fulvestrant ± taselisib, and analyzed the subgroups against co-altered genes, pathways, and outcomes. Results ctDNA samples with clonal multiple PIK3CAmut had fewer co-alterations in receptor tyrosine kinase (RTK) or non-PIK3CA PI3K pathway genes compared to samples with subclonal multiple PIK3CAmut indicating a strong reliance on the PI3K pathway. This was validated in an independent cohort of breast cancer tumor specimens that underwent comprehensive genomic profiling. Furthermore, patients whose ctDNA harbored clonal multiple PIK3CAmut exhibited a significantly higher response rate and longer progression-free survival vs subclonal multiple PIK3CAmut. Conclusions Our study establishes clonal multiple PIK3CAmut as an important molecular determinant of response to p110α inhibition and provides rationale for further clinical investigation of p110α inhibitors alone or with rationally-selected therapies in breast cancer and potentially other solid tumor types
    corecore