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Lung cancer, of which non-small cell lung cancer (NSCLC) is the most common

form, is the second most prevalent cancer and the leading cause of cancer-related deaths.

NSCLCs primarily comprise adenocarcinomas (LUAD) and squamous cell carcinomas (LUSC).

Advances in early detection and prevention have been limited by the lack of early-stage

biomarkers and targets. A comprehensive molecular characterization of premalignant le-

sions and tumor-adjacent normal tissue can aid in better understanding NSCLC pathogen-

esis. However, these investigations are further challenged by limited tissue availability and

low cellular fractions of detectable somatic mutations.

Therefore, there is a dearth of knowledge about the pathogenesis of premalignant

lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known pre-

cursor to LUADs. We performed a cross-platform integrative analysis comprising targeted

DNA sequencing, genotype array profiling and transcriptome sequencing of matched AAHs,

LUADs and normal tissues from 23 early-stage patients. The study revealed potentially

divergent pathways based on the mutation status of AAH (BRAF vs KRAS ), recurrent

chromosomal aberrations (17p loss) and the presence of immune deregulation early in the

pathogenesis of AAHs.

Molecular changes, characteristic of NSCLCs, might also occur in normal tissues,

preceding identifiable premalignancy-associated morphological changes. We sought to com-

prehensively survey the somatic mutational architecture of the normal airway in early-stage

NSCLCs. Targeted DNA sequencing allowed us to capture driver mutations at low cellu-

lar fractions, typical of these non-malignant tissues. Additionally, genotype array profiling

helped characterize subtle chromosomal aberrations in these tissues. This multi-region
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study included tumor-adjacent and -distant airways, nasal epithelia and uninvolved normal

lung (collectively cancerized field) along with matched multi-region NSCLCs and blood cells

from 48 patients. Integrative computational analysis revealed genomic airway field carcino-

genesis in 52% of cases. The airway field exhibited mutations in known drivers, that were

present at lower frequencies compared to NSCLCs, suggestive of selection-driven clonal ex-

pansion. These driver events also comprised somatic two-hit alterations in matched airway

field and NSCLCs.

Our study design offers spatiotemporal insights into NSCLC development and sug-

gests potential targets for early detection and treatment, in possibly less hostile environ-

ments of premalignancy. To validate and enhance the utility of the bioinformatic techniques

devised and implemented for these investigations, I also provide methods to expand such

analyses across multiple tumor sites.
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CHAPTER 1

INTRODUCTION

1.1 Background

Cancer is a multi-step complex genetic disease that is characterized by several hallmarks

of development [1]. Cancer is thought to arise from a single normal cell. Each cell in our

body contains genetic information encoded within the deoxyribonucleic acid (DNA) that

is packaged into chromosomes. Human DNA has 3 billion bases consisting of a sequence

of four nucleotides: adenine (A), guanine (G), cytosine (C), and thymine (T), that are

together organized in a double-stranded structure. Humans have 23 pairs of chromosomes

consisting of 22 pairs of autosomes (1-22) and 1 pair of sex chromosomes (XX in females

and XY in males). DNA has the property of self-replication, where in each strand serves as

a template for the synthesis of two new identical strands. This process of DNA replication

is crucial for cells to divide, grow and replenish. While this process has many checkpoints

to assure the correctness of the replicated DNA, the machinery is not perfect. This might

result in a mistake, such as of a single base change, that we term a mutation. Mutations

may also develop due to lifestyle habits and environmental factors such as smoking and

ultraviolet light (UV) exposure. Mutations in certain genes called proto-oncogenes that

normally help cell growth, can result in an activation and overproduction of oncogenes

that drive cancer. Mutations might also occur in genes termed as tumor suppressors, that

are meant to safeguard normal cellular functions such as DNA repair and apoptosis; these

may become inactivate resulting in abnormal cell growth that might further drive cancer

development. The presence and accumulation of such mutational processes may result in

genomic instability, an emerging hallmark of cancer and known to play a critical role in

tumor initiation and progression [2].

Genomic instability is thought to occur in all stages of cancer development, from a

normal cell acquiring a mutation, to precancerous lesions and all the way until the formation

of more advanced cancers. Mutations as small as a single nucleotide variation (SNV) or
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those that span larger regions such as whole-chromosomes or chromosome arms as well

as genomic rearrangements may occur in genomically unstable cells. Characterizing these

changes, early on, such as in precancerous lesions or normal cells in the vicinity of the tumor

can aid in understanding the molecular mechanisms preceding tumor formation.

1.1.1 Genetic characterization of lung cancer

Lung cancer is the second more frequent form of cancer in the United States with an

estimate of 228,150 new cases in 2019 [3]. It is also the leading cause of cancer-related

deaths worldwide, accounting for one quarter of all cancer deaths [3]. Among the different

types of lung cancer, the predominant form (∼ 85%) is non-small cell lung cancer (NSCLC).

Other forms include small cell lung cancer (10-15%) and lung carcinoid tumors(<5%).

NSCLCs consist of three major subtypes: lung adenocarcinoma (LUAD), lung squa-

mous cell carcinoma (LUSC) and large-cell lung cancer. LUAD and LUSC together account

for about 65-70% of all NSCLCs [4]. Disparate molecular pathways and cells of origin have

been implicated in these different subtypes. Smoking has a huge influence on lung car-

cinogenesis, particularly in LUSC, with cells of origin often located in the central airway.

NSCLCs are also seen in non-smokers and often are LUADs that develop in the peripheral

airways. Some of the earliest mutations implicated in NSCLCs are within oncogenes such

as EGFR and KRAS, as well as mutations and loss of heterozygosity (LOH) of chromosome

arms such as 3p, 9p and 17p spanning tumor suppressor genes CDKN2A and TP53 [4].

These mutations show preferential abundance based on smoking patterns and histology.

For example, KRAS mutations have found be predominant among smokers and 3p LOH

is more prevalent in LUSCs [4]. Large studies such as those by The Cancer Genome At-

las (TCGA) have identified several other mutational patterns and gene expression changes

specific to these different subtypes of NSCLCs [5, 6].

In spite of the progress made in understanding the genetic and molecular aberra-

tions in NSCLCs, these tumors continue to account for high rates of mortality. This is

largely attributed to their late diagnosis [4]. The National Lung Cancer Screening Trial

has evaluated the importance of low-dose computerized tomography (CT) in screening for

lung cancers; the study identified that LUADs and LUSCs were detected more frequently at
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the earliest stage by low-dose helical CT compared to standard chest X-rays [7]. However,

advances (e.g., molecular-based) in early detection and prevention of NSCLC have been

limited by a poor understanding of early changes in the pathogenesis of this tumor [8]. This

necessitates studies that examine precancerous stages as well normal tissues that precede

the development of tumors.

1.1.2 Field cancerization in lung cancer development

The phenomenon of field cancerization was first proposed by Slaughter et al. following the

observation that the epithelium adjacent to oral tumors exhibited histological abnormalities,

it was proposed that these patches of abnormal tissues could lead to multiple primary

tumors as well as local recurrence [9]. Although first observed in oral cancers, the concept

of field cancerization was later extended to cancers of other organs, such as esophagus, skin,

stomach, colon, cervix and lung [9, 10].

Exposure to mutagens and age-related random mutations from errors in the natural

process of DNA replication are thought to initiate a mutant lineage that might ultimately

lead to cancerized fields [10]. Under the principles of field cancerization, this mutant lineage

may acquire additional mutations and become phenotypically strong to survive and expand

in that microenvironment. This may in turn give rise to patches of genetically distinct clones

that continue developing, especially in the presence of continued carcinogen exposure. Some

of these patches may eventually progress to a neoplasm, thus giving rise to a cancerized

field. The cancerized field consists of cells that are further along on the evolutionary path of

cancer development, that may precede observable histopathological abnormalities. Through

the continuous expansion of these cancerized fields, premalignant and malignant phenotypes

may result [10].

In lung cancer, previous studies have identified mutations and gene expression

changes in normal airway epithelia. For example, a study of histologically normal epithelia

and mildly abnormal premalignant lesions of LUSCs identified multiple sequentially occur-

ring chromosomal loss of heterozygosity (LOH) events, such as of chromosome arms 3p and

9q, that increased in frequency based on the severity of histological changes in the multistage

progression to LUSCs [11]. Another study identified additional deletions at chromosomal
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regions 2q35-q36 and 12p12-p13 in matched histological normal bronchial epithelium and

tumor tissue of NSCLC in long-term smokers [12]. A recent multi-region study by our group

provided a genome-wide landscape of chromosomal aberrations, including frequent and re-

current events on chromosome 9 in the airway epithelium of early-stage NSCLC patients

[13]. Apart from chromosomal changes, studies have also observed gene expression changes

in the cancerization field of normal-appearing airway including those shared with adjacent

NSCLCs [14, 15, 16], thus suggesting the utility of airway gene expression in early lung can-

cer diagnosis among intermediate-risk patients. In comparison to chromosomal aberrations

and gene expression, studies of gene mutations in the normal bronchial epithelium have

been limited. One of the first few observations of point mutations in non-malignant tissue,

involved the KRAS oncogene, in non-malignant and matched NSCLC tumors of smokers

[17]. Around the same time, another group reported widespread TP53 mutations in the

bronchial epithelia of a cancer-free individual [18]. Later, mutations in EGFR were detected

in normal respiratory epithelium of 43% of patients with EGFR-mutant adenocarcinomas

[19]. More recent studies have identified epigenetic alterations in the normal bronchial ep-

ithelium of lung cancer cases and cancer-free smokers such as methylation of CDKN2A,

DAPK, RAR-2 and GSTP1 [20, 21, 22]. Although often limited to specific known lung

cancer drivers and targeted regions, these studies shed light on the molecular alterations in

histologically normal tissues.

1.1.3 Premalignant lesions of lung cancers

Lung cancers are thought to result from a series of progressive pathological changes, com-

prising several precursor lesions in the respiratory mucosa. Although many studies have

identified molecular abnormalities in NSCLCs, much fewer studies have focused on ex-

ploring the molecular characteristics of early precancerous lesions that precede overt lung

tumors. Among the different subtypes of lung cancer, most is known about the sequential

progression of centrally arising LUSCs, while premalignant lesions of other subtypes such

as LUADs, large cell carcinomas or SCLCs still remain poorly documented.

Among NSCLCs, due to the central origin of LUSCs, serially sampled large bronchi

have helped identify a series of changes from hyperplasia (either basal cell or mucous),
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squamous metaplasia, different degrees of dysplasia to carcinoma in situ (CIS) and invasive

squamous oriented cancer [23]. Since then, studies have described molecular aberrations in

these different lesions along the development of LUSCs, starting with early loss of 3p and

9p, followed by LOH events spanning 8p and 17p [11, 24]. Methylation of CDKN2A has also

been observed in LUSC premalignancy, with a frequency that increased with histopathologic

progression [25]. More recent studies have identified differentially expressed genes in pre-

malignant lesions of lung squamous tumors, including the increased expression of SLC2A1,

CEACAM5, and PTBP3, activation of PI3K and MYC [26, 27], as well as depletion of

interferon signaling, antigen presentation and immune cells in these lesions [28].

In comparison to the well characterized multi-step progression in the development

of LUSC, little is known about the premalignant stages of LUAD, the other major subtype

of NSCLCs. Atypical adenomatous hyperplasia (AAH) is the only known premalignant

lesion, with the pathogenesis of many adenocarcinomas being largely unknown [8]. Other

low-grade lesions such as adenocarcinoma in situ (AIS) and minimally invasive adenocar-

cinomas (MIA) have been shown to occur prior to development of invasive LUADs. There

is a suggested continuum of these lesions in the development of LUADs from AAHs; this

was later shown to not be the case for all LUADs, thereby allowing for non-linear pro-

gression mechanisms [29]. Very few studies have characterized these premalignant lesions.

Mutations in KRAS and EGFR have been identified in premalignant, preinvasive and in-

vasive lesions of LUADs [30, 31, 32]. It was further shown that KRAS mutations were

more frequent in premalignant lesions than LUADs, while EGFR mutations showed similar

frequencies across the different stages of LUAD pathogenesis [32]. Some AAH lesions have

demonstrated LOH of chromosomes arms, including 3p, 9p, 9q, 17p, and 17q; these aberra-

tions have also been commonly found in invasive adenocarcinomas [33, 34]. Small, targeted

studies of gene expression have also identified changes occurring early in the development of

AAH and LUADs. For example, the loss of STK11 was associated with dysplasia, thereby

suggestive of its role in the malignant transformation of AAHs to LUADs [35]. Other ex-

pression changes observed in AAH lesions include the activation of NKX2-1, cyclin D1,

survivin and an RNA-binding protein called hnRNP B1, as well as loss of p16 (CDKN2A)

[36, 37, 38]. Another study investigated the role of epigenetic modifications in LUAD de-
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velopment; the authors found elevated DNA methylation at CDKN2A and PTPRN2 in

AAHs, while also describing epigenetic changes that occur at later stages, such as in AIS

and invasive LUADs [39]. A recent targeted next-generation sequencing (NGS) study of

multi-focal AAH, AIS and MIA lesions identified mutations in KRAS, TP53 and EGFR as

indicators of malignant transition to invasive adenocarcinomas; the study further detected

these early mutations in paired circulating DNA [40]. These studies not only point to the

molecular complexity of AAH, but highlight the challenges in studying their role as precur-

sors to LUAD, which still remains largely unknown.

Figure 1.1: Investigations of airway field cancerization and premalignancy in lung
cancer pathogenesis. Kadara and colleagues highlight the importance of understanding
molecular changes involved in the development of the cancerized airway field as well as their
progression to premalignant and malignant phenotypes that would aid the early detection
and treatment of lung cancers. (H Kadara, P Scheet, I. I. Wistuba, and A. E. Spira, Early
events in the molecular pathogenesis of lung cancer, Cancer Prevention Research, vol. 9,
no. 7, pp. 518 - 527, 2016. Permission obtained through the Copyright Clearance Center).

1.2 Objectives

Our long term goal is to better characterize the evolution of tumors by studying apparent

normal and premalignant tissues in early-stage cancer patients to identify potential biomark-

ers for the early detection of these tumors in intermediate-risk individuals (e.g., smokers)

or predict targets for the prevention of these fatal tumor by better tackling preneoplastic
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tissues, as illustrated in Figure 1.1.

This not only necessitates better profiling technologies, but also demands improved

computational methods to push the limits of mutation detection to normal and premalignant

lesions that exhibit low overall fraction of mutant cells.

A comprehensive annotation of the genomic landscape of mutational processes oc-

curring in normal and premalignant tissues using a combination of microarray and next

generation sequencing (NGS) methods is critical for enabling future therapies or preventive

measures. With decreasing costs for NGS technologies, several tumor genomes, includ-

ing those originating in the lung, have been assessed to infer comprehensive landscapes

of genetic alterations and gene expression patterns, such as in The Cancer Genome Atlas

(TCGA) consortium. We utilize the results from these large-scale tumor studies, particu-

larly in NSCLCs, to compare our findings in normal or premalignant tissues and NSCLCs,

that might elucidate insights into early events in the development of NSCLCs. We aim to

achieve this through a cross-platform analyses, comprising multiple DNA and RNA-based

technologies, and validating our findings in silico across these platforms. As such, our

objectives are the following:

1. To characterize atypical adenomatous hyperplasia and study its neoplastic

progression to early-stage invasive lung adenocarcinomas, by performing a

multi-platform assessment comprising deep targeted DNA sequencing, broad-range

SNP genotyping arrays and transcriptome sequencing of matched normal, AAH and

LUAD tissues.

2. To identify the mutational landscape of the cancerized field in the normal

airway epithelium of early-stage NSCLCs, by performing a genome-wide anal-

ysis of single nucleotide mutations (SNVs) as well as large chromosomal aberrations

crucial to the evolution of NSCLCs from a cancerized field comprising multi-region

samples of tumor-adjacent and distant airway epithelia.

3. To extend our analysis to identify the pan-cancer landscape of chromosomal

aberrations in the TCGA consortium, by developing and implementing sensitive

computational methods that can identify, compare and contrast our findings across
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platforms as well as highlight potentially discordant results.

Mutational patterns in the normal airway epithelium and AAHs can help answer funda-

mental questions involving the pathogenesis of these tumors. Our data-driven genomics

approach, with significant potential in predicting outcomes in high-risk patients, can lead

to novel biomarker discovery and personalized chemo-preventive strategies that may delay

or halt the tumorigenesis process in the earliest stages.

This dissertation explains the research study design, bioinformatic analyses devised

and implemented, and biological interpretation of premalignant and normal-tissues in lung

cancer patients as well as computational methods developed to compare our findings with

the tumors in TCGA consortium. Give the collaborative nature of the study, my work

focused on designing novel computational strategies for molecular characterization as well

as interpreting the analyses for biological insights. In chapter 2, I describe our work on

assessing the mutational and transcriptional landscape of matched normal, premalignant

and tumor tissues from early-stage LUAD patients. In chapter 3, I outline our work on

inferring tumor evolution from a cancerized field in early-stage NSCLCs using mutation

profiles from a multi-region sampling of tumors and matched airway epithelia. In chapter

4, I report the computational methods we developed and implemented to compare and

contrast our findings in the TCGA consortium as well as to extend our analysis to identify

patterns of chromosomal aberrations across multiple tumor types. In chapter 5, I outline

the significance of our findings, describe future research directions and discuss the utility

of the computational methods that I developed and implemented over the course of this

project.
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CHAPTER 2

INVESTIGATION OF PREMALIGNANT LESIONS OF LUNG

ADENOCARCINOMAS

Atypical adenomatous hyperplasia (AAH) is the only known precursor lesion to lung ade-

nocarcinomas. AAHs are challenging to identify and are often captured incidentally, thus

making molecular interrogations of these premalignant lesions limited. Due to the low cellu-

lar fractions of detectable somatic mutational processes within these premalignant tissues,

little is known about its pathogenesis and progression to LUAD. Previously, mutations in

known lung cancer drivers such as KRAS, EGFR and TP53 as well loss-of-heterozygosity

in targeted chromosomal arms such as 9p, 9q, 16p and 17q have been shown to occur in

AAHs. There is also evidence for gene expression and epigenetic modifications early in AAH

development. However, most studies of AAHs have been limited to specific targeted regions

known to be important in LUAD pathogenesis, and therefore, the landscape of genomic

and transcriptomic changes in AAH developments remains unexplored. Our goal was to

perform a multi-platform assessment of matched normal, premalignant AAH and invasive

LUAD specimens from early-stage patients to infer and integrate the landscape of somatic

mutations and gene expression changes that inform the molecular pathogenesis of AAH.

In this chapter, I describe my work on identifying single nucleotide mutations from

deep targeted DNA sequencing and genome-wide patterns of large chromosomal aberrations

identified from broad-scale SNP genotyping arrays in AAHs. I also describe investigations

of the gene expression changes occurring in initiation of AAH from normal tissues as well

as those occurring later in their progression to LUADs. I conclude by proposing a list of

candidate genes based on an integrative analysis that might suggest important roles in the

initiation or progression of AAHs. The contents of this chapter are based on the following

publications:

Sivakumar S, Lucas FAS, McDowell TL, Lang W, Xu L, Fujimoto J, Zhang J, Futreal

PA, Fukuoka J, Yatabe Y, Dubinett SM, Spira AE, Fowler J, Hawk ET, Wistuba II, Scheet
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P, Kadara H. Genomic landscape of atypical adenomatous hyperplasia reveals divergent

modes to lung adenocarcinoma. Cancer Research 2017;77(22):611930.

Copyright permissions are not required, since AACR states Authors of articles published in

AACR journals are permitted to use their article or parts of their article in the following

ways without requesting permission from the AACR - Submit a copy of the article to a doc-

toral candidate’s university in support of a doctoral thesis or dissertation.

Sivakumar S*, Lucas FAS*, Jakubek Y, McDowell TL, Lang W, Kallsen N, Peyton S,

Davies GE, Fukuoka J, Yatabe Y, Zhang J, Futreal PA, Fowler J, Fujimoto J, Ehli EA,

Hawk ET, Wistuba II, Kadara H, Scheet P. Genomic landscape of allelic imbalance in pre-

malignant atypical adenomatous hyperplasias of the lung. In Press. Ebiomedicine 2019.

Ebiomedicine is part of the Lancet group and states that all requests to reproduce or make

available anything in the journalin whole or in part, in electronic or in any other form,

including translationshould be made through Elsevier. Elsevier states that ”Authors can

include their articles in full or in part in a thesis or dissertation for non-commercial pur-

poses.”

2.1 Study design

I present a characterization of single nucleotide mutations, gene expression and chromosomal

allelic imbalance profiles in the pathogenesis of AAHs by studying these premalignant lesions

along with normal lung parenchyma tissues (NL) and primary LUADs from a cohort of 23

patients with early-stage LUAD (Figure 2.1). Recurrently mutated genes and chromosomal

aberrations that encompass known lung cancer driver genes were further assessed for shared

(AAH and LUAD) and tissue-specific (AAH or LUAD only) patterns. Gene expression

changes were also interrogated to assess their role early in AAH development as well as for

those occurring later in progression of AAH to LUAD.
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Figure 2.1: Study design to understand the development and progression of ade-
nomatous atypical hyperplasia. A two-pronged approach, consisting of DNA-based
profiling and transcriptome sequencing were used to study the pathogenesis of AAH.

2.2 Methods

2.2.1 Cohort

Normal lung parenchyma tissues (NL), AAHs, and LUADs were acquired from 23 patients

with early-stage LUAD who were evaluated at the Aichi Cancer Center (Nagoya, Japan) and

Nagasaki University (Nagasaki, Japan). Specimens were approved for study by Institutional

Review Boards and according to the international ethical guidelines for biomedical research

involving human subjects (Council for International Organizations of Medical Sciences).

Informed written consents were received from all subjects wherever necessary. Clinico-

pathologic features of these patients are summarized in Table 2.1. The diagnosis, specimen

collection and slide preparation were carried out between 2011 and 2015 for all patients.

The AAH lesions were incidental and identified by radiological imaging. Specimens were

obtained formalin-fixed and paraffin-embedded (FFPE) and stained by hematoxylin and

eosin (H&E). Assessment of histopathology of AAHs and LUADs was performed by analy-
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sis of H&E stained alternating slides (from 5 micron sections) with sections in between (10

micron) preserved for RNA isolation. Normal lung was taken from resected areas and was

confirmed histopathologically following H&E staining to be consistent with normal tissue

devoid of preneoplastic or neoplastic cells. Tissues were pathologically examined following

the World Health Organization on the classification of lung tumors in the report by Travis

and colleagues [41]. Images of the lesions were scanned using the Aperio platform (Leica

Biosystems). A tabulation of cases and samples analyzed by DNA-sequencing (22 cases),

transcriptome sequencing (17 cases) and SNP genotyping arrays (16 cases) is provided in

Table 2.2.

Case Age Gender Tobacco history Stage

1 70 Male Ever IA
2 21 Female Ever IB
3 67 Male Ever IA
4 46 Female Ever IA
5 79 Female Never IA
6 40 Male Ever IA
7 72 Male Never IA
8 48 Female Never IA
9 51 Female Never IB
10 81 Female Never IA
11 67 Male Ever IA
12 63 Female Never IA
13 79 Female Ever IA
14 54 Female Never IA
15 62 Male Ever IA
16 64 Female Never IA
17 67 Male Ever IA
18 57 Female Never IA
19 71 Male Ever IB
20 63 Male Ever IIIA
21 74 Female Never IA
22 60 Male Ever IA
23 65 Male Ever IB

Table 2.1: Clinicopathological features of the cohort comprising matched normal lung
parenchyma, AAH and LUAD
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DNA targeted sequencing Transcriptome sequencing SNP genotyping arrays

Case Normal AAH LUAD Normal AAH LUAD Normal AAH LUAD

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 0 0 0
4 1 1 1 1 1 1 0 0 0
5 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1
8 1 1 1 0 1 1 0 0 0
9 1 1 1 1 1 1 0 0 0
10 1 1 1 1 1 1 1 1 1
11 1 1 1 0 0 0 1 1 1
12 1 1 1 0 1 0 0 0 0
13 1 1 1 0 0 0 1 1 1
14 1 1 1 1 1 1 0 0 0
15 1 1 1 0 0 0 1 1 1
16 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1
19 1 1 1 0 0 0 1 1 1
20 1 1 2 1 1 1 0 0 0
21 1 1 1 0 0 0 1 1 1
22 1 1 1 1 1 1 1 1 1
23 0 0 0 0 0 0 1 1 1

Total: 22 22 23 15 17 16 16 16 16

Table 2.2: Samples analyzed by DNA sequencing, transcriptome sequencing and SNP geno-
typing arrays.
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2.2.2 DNA and RNA isolation

DNA/RNA was extracted from all samples using the AllPrep DNA/RNA FFPE kit from

Qiagen and suspended in nuclease free water (RNA) or AE buffer (DNA). 5 to 15 sec-

tions/slides per specimen were deparaffinized prior to isolation of normal tissues and lesions

by scraping with 25-gauge needles under a stereomicroscope. Tissue fragments were then

collected in 1.5 ml self-lock tubes containing 100 to 200 µl of lysis buffer PKD (Qiagen).

Sample concentrations were measured on a NanoDrop 1000 (Thermo Fisher Scientific), and

RNA integrity numbers indicative of overall quality were obtained on the 2100 Bioanalyzer

(Agilent Technologies) using the RNA 6000 Nano or Pico kit according to the manufac-

turers protocol. DNA was quantified using the Quant-iT PicoGreen double stranded DNA

(dsDNA) kit (Thermo Fisher Scientific) according to the manufacturers instructions.

2.2.3 DNA targeted sequencing

The Ion AmpliSeq Comprehensive Cancer Panel (Thermo Fisher Scientific) comprising

primers for 409 canonical cancer-associated genes and the AmpliSeq Library Kit 2.0 (Thermo

Fisher Scientific) were used to prepare barcoded libraries from the FFPE DNA samples.

Target amplification was carried out in 5 µl reactions with 17 cycles of amplification. The

pools were then combined for digestion and ligation using Ion Xpress barcode adapters

(Thermo Fisher Scientific) according to the manufacturers protocol. The libraries were

then quantified with quantitative PCR (qPCR) using the Ion Library TaqMan Quanti-

tation Kit (Thermo Fisher Scientific). Template reactions were prepared using the Ion

PI Hi-Q OT2 200 Kit and the Ion PI Hi-Q Chef kit (Thermo Fisher Scientific) based on

the commercial protocol. Templates were then assessed on a Qubit 2.0 fluorometer be-

fore loading onto Ion PI chip v3 (Thermo Fisher Scientific). Sequencing was performed on

the Ion Torrent Proton platform according to the manufacturer’s instructions. Specimens

from two cases were processed together in one chip and sequenced on an Ion Proton se-

quencer. Sequencing reports generated in the Ion Torrent Suite 5.0 were used to assess the

quality of the libraries and sequencing runs. Base calling results were aligned to the refer-

ence hg19_ampliseq_transcriptome_ercc_v1.fasta provided by the manufacturer. The
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aligned BAM files were then used to run Torrent Variant Caller 5.0 (TVC) using manufac-

turers targeted region BED file to generate VCF files. The targeted DNA sequencing data

files have been deposited in the sequence read archive (SRA) under Bioproject accession

PRJNA398260. This is a subsection in Chapter 2.

2.2.4 Transcriptome sequencing

A subset of the cases (15 NLs, 17 AAHs, and 16 LUADs from 17 different cases) was se-

lected for transcriptome sequencing based on specimen availability as well as transcriptome

sequencing quality indicated by percentage of mapped reads and valid on-target reads. For

library preparations, approximately 30 ng of RNA was used based on sample concentra-

tions obtained from the Qubit HS RNA assay (Thermo Fisher Scientific). All samples were

heat shocked at 80C for 10 minutes and cooled to room temperature for 5 minutes and

then reverse-transcribed to generate cDNA libraries using the Ion AmpliSeq Transcriptome

Human Gene Expression Kit (Thermo Fisher Scientific) adhering to the manufacturers

protocol for FFPE samples with 16 cycles of target amplification. Library concentrations

were determined by qPCR using an absolute quantitation method and the Ion Library

TaqMan Quantitation Kit (Thermo Fisher Scientific) following the manufacturers protocol.

Template reactions were carried out using the Ion PI Hi-Q OT2 200 Kit (Thermo Fisher

Scientific) according to the manufacturers instructions and then loaded onto Ion PI chips

v3 using the Ion PI Hi-Q Sequencing 200 Kit based on the manufacturers protocol (Thermo

Fisher Scientific). The Ion Torrent Suite 5.0 was used to assess the quality of the libraries

and sequencing runs. For sequencing, specimens from two cases were processed together

in one chip. All samples were sequenced on an Ion Proton sequencer. Raw transcriptome

sequence data files have been deposited in the gene expression omnibus under data series

GSE102511.

2.2.5 Genome-wide high-density array profiling

A subset of 16 cases (16 NLs, 16 AAHs, and 16 LUADs) were selected for genotype array

profiling based on specimen availability. The extracted DNA was processed through the

Infinium HD FFPE DNA Restoration protocol (Illumina Inc., San Diego, CA.) followed
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by SNP genotyping using the Illumina Infinium Global Screening Array-24 v1.0 BeadChip

array. Raw intensity files were analyzed with GenomeStudio Genotyping Module v2.0 (Illu-

mina Inc., San Diego, CA.) to call genotypes, normalize and cluster data in order to obtain

SNP metrics such as B-allele frequency (BAF) and log R ratio (LRR).

2.2.6 Strategy to identify somatic single nucleotide mutations

2.2.6.1 Using multiple variant calling algorithms

In the Ion Torrent server, results from base calling were aligned to a reference file hg19_

ampliseq_transcriptome_ercc_v1.fasta, which produced aligned BAM files. An auto-

mated analysis was performed with Ion Torrent proprietary software Ion Reporter to call

somatic variants in LUADs and AAHs by contrasting events in NLs. The two available

tumor specimens from case 20, were pooled together for analysis. The following two pro-

grams were used to augment variant calls in AAHs and LUADs: MuTect, using the default

settings with the exception of retaining those annotated with the tag nearby_gap_events;

and Varscan2, using a minimum variant allele frequency (VAF) threshold of 0.01987 instead

of its default of 0.2 and filtering variants with a P value <10-6. The VAF threshold for

Varscan2 was reduced to identify a larger number of low frequency mutations given the high

average depth of sequencing; the threshold of 0.01987 was derived based on the minimum

VAF detected in Ion Reporter, the caller natively calibrated for this platform. Finally as a

fourth caller, the VCF files generated marginally from Torrent Variant caller (TVC) were

subjected to a simple subtraction of variants, removing those observed in the matched nor-

mal sample for each case. Instead of using all mutations detected by any of the four callers,

for each sample, the stringency was increased to include mutations that were detected by

at least two different callers, with the exception of those identified by Ion Reporter software

and TVC since they are produced from the same source and are expected to share more

mutations. Mutations in exonic, splicing, and untranslated regions (UTR) were assessed,

focusing on exonic single-nucleotide variants within the targeted 409 cancer gene panel.

Mutations from all four callers/methods were annotated using ANNOVAR and Oncotator.

A post-processing protocol was then applied to remove potentially-overlooked germline
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variants based on their presence in the Exome Aggregation Consortium (ExAC). The

ExAC data was used as it encompasses commonly used databases 1000 genomes project

and NHLBI-GO Exome Sequencing Project. In addition to the matched normal, AAH

and LUAD, mutations identified in other normal tissues were also excluded as potentially

germline variants. Mutations within known lung adenocarcinoma cancer drivers [5] and

other cancer associated genes [42] were further assessed for specific patterns in AAH and

LUADs of our cohort.

2.2.6.2 PolyAna

An additional concern with Ion semiconductor sequencing technology is the potential false

positives mutations due to reduced accuracy at loci with homopolymer repeats of the same

nucleotide. Briefly, the sequencing chemistry works by releasing a hydrogen ion with the

incorporation of every nucleotide in the DNA strand being sequenced. The released hydro-

gen ion results in a change in pH of the solution that is then converted to a voltage signal

in the ion sensors. However, in regions of homopolymers, multiple identical bases often

result in inaccurate measurement of the magnitude of voltage pulse, thus causing difficulty

in accurately estimating the length of the homopolymer. Preliminary approaches have been

implemented to better correct and align the sequencing data to avoid homopolymer derived

mutations [43]. In order to be more stringent, in our study, we decided to exclude mutations

that are in regions of homopolymers.

I developed PolyAna, a homopolymer filter that identifies homopolymers in the

vicinity of the mutation based on its genomic location. The pseudocode for the program

is shown in Figure 2.2. The script takes the following as arguments: the variant file to

be annotated, reference fasta file, homopolymer length cut off, a window threshold and an

output file name. Defaults for minimum homopolymer length and window size are set to

6bp and 10bp respectively.

For every mutation, it first computes a repeat length to identify if the mutation

is in a repeat segment. Based on the repeat length, it runs the appropriate segment of

the code. First, if the repeat length is between four and the homopolymer length cut

off (default = 6bp), it annotates the variant as being in a homopolymer region if the the
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Figure 2.2: Pseudocode for PolyAna. A quality control step in the processing of Ion Tor-
rent sequencing data to identify and remove potential homopolymer-derived false positive
somatic mutations.
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alternate allele matches the adjacent nucleotide base. Then, if the variant has a short

repeat length, lesser than the homopolymer length cut off, and the alternate allele doesn’t

match the adjacent base, it looks for homopolymers in the window. This section of the

code is divided into three components: (A) a test to check if there is a homopolymer

immediately adjacent to the mutation, (B) a test to check if there is a homopolymer in

the vicinity (i.e., within the window specified), and (C) a test to check for short stretches

of homopolymers (e.g., AAACCC) in the vicinity as specified by the window. If either

of these conditions are satisfied, the variant is annotated as being in the vicinity of the

variant while the remaining mutations are treated as potentially valid hits. Among the

remaining variants that have a repeat length greater than the homopolymer length cut off,

if the mutation is in within a homopolymer segment or if the alternate allele matches the

adjacent nucleotide, the variant is annotated as a homopolymer, leaving the remaining as

potentially valid mutations. In this way, the mutations arising from a homopolymer region,

or with a homopolymer or short stretches of homopolymers in the vicinity can be filtered

out during quality control to retain only the potentially valid mutation calls. PolyAna is

available at http://scheet.org/software.html and was published as a part of a recent

publication [44].

2.2.7 Validation of somatic mutations using digital PCR

Somatic mutations identified in the driver genes BRAF and KRAS in AAHs as well as

the samples (AAH and LUAD) carrying the EGFR p.L858R mutation as detected in DNA

targeted sequencing were verified by digital PCR using the QuantStudio 3D system (Ther-

mofisher, A26317) following the manufacturers protocol for use with a chip loader. TaqMan

and Custom TaqMan SNP genotyping assays were used as probes for the mutations (Ther-

mofisher 4351379 and 4332077). Samples with less than 30 ng of input DNA were given 7

cycles of pre-amplification using the Platinum PCR SuperMix High Fidelity (Thermofisher

12532016) and SNP genotyping assays as primers. Allele frequencies were obtained from

analyzing the chip files in the QuantStudio 3D software available on the Thermofisher cloud.
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2.2.8 Gene expression analysis

Transcriptomes were quantified from BAM alignment files generated in the Ion Torrent

server using a expectation-maximization (E/M) algorithm based procedure [45]. Resultant

gene-based counts were normalized, log (base 2) transformed, and corrected for batch effects

using the R limma package [46]. Differentially expressed genes were identified by ANOVA

based on a P <0.001, false discovery rate (FDR) of 0.01 and minimum of 2-fold change

in at least one of three comparisons (AAH-NL, LUAD-NL and LUAD-AAH). The model

incorporated specimen type as a fixed effect and with different patients considered random

effects. Hierarchical clustering of the samples was performed in R using Pearson correla-

tion. To understand immune signaling in the pathogenesis of AAH, an a priori list of 730

markers of immune response and function (nCounter PanCancer Immune Profiling Panel

from nanoString technologies) were used. Housekeeping genes in this panel were excluded

from analysis. The expression of these 730 immune markers was analyzed similar to the

global gene expression analysis, but with a minimum 1.5-fold change required in at least

one of the three comparisons mentioned above. For identifying genes differentially expressed

among different groups of AAHs based on select mutation status, a P <0.01 threshold and

a 1.5-fold change cut-off was used. Pathways, gene-network identification and gene set

enrichment analyses were performed using the commercially available software Ingenuity

Pathways Analysis (IPA).

In order to better visualize and assess the gene expression changes from NL to

AAH to LUAD, I developed a trivial classifier composed of two one-sided t-tests (P <0.05)

to identify eight disparate patterns. The two tests consisted of comparing NL and AAH,

followed by comparing AAH and LUAD. The eight disparate patterns included gene expres-

sion changes that (i) progressively decrease from NL to AAH to LUAD, (ii) progressively

increase from NL to AAH to LUAD, (iii) decrease from NL to AAH only with no change

from AAH to LUAD, (iv) increase from NL to AAH only with no change from AAH to

LUAD, (v) decrease from AAH to LUAD only with no change from NL to AAH, (vi) in-

crease from AAH to LUAD only with no change from NL to AAH, (vii) increase from NL

to AAH with a simultaneous decrease from AAH to LUAD, (viii) increase from NL to AAH
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with a simultaneous decrease from AAH to LUAD. The patterns (vii) and (viii) are ex-

pected to be rare among these different patterns of expression changes. This classifier was

applied to assess patterns in the global gene expression profiles as well as in the assessment

of expression changes in a subset of immune markers.

Finally, TIMER [47] was used to reanalyze the gene expression data to estimate the

abundance of six tumor-infiltrating immune cell subsets (B cells, CD4 T cells, CD8 T cells,

macrophages, neutrophils, and dendritic cells) among all three tissue types (NL, AAH and

LUAD).

2.2.9 Identification of subtle genome-wide allelic imbalance

Allelic imbalance (AI) was inferred using hapLOH, a method developed in our laboratory, to

detect subtle patterns of BAFs at heterozygous markers consistent with a relative haplotype

imbalance [48]. Using regions that exhibit deviations in their BAFs along with LRR inten-

sities for markers within regions of AI, events were classified as gain, loss and copy-neutral

loss of heterozygosity (cnLOH) as described previously [13]. Briefly, the event regions with

LRR ≥ 0.05 were classified as gains while those with LRR ≤ -0.05 were classified as losses.

Among the remaining calls, regions with BAF deviation of 0.1 or greater were classified as

cnLOH. The event calls that were not classified into these three event types were marked as

subtle AI. Subsequently, detected AI events were specifically tested for statistical evidence

of existence in other samples from the same individual, using a binomial test of similarities

between the two sample-specific haplotypes in putative excess (derived from the sample

BAFs) within each event region.

For each patient, genomic regions under AI were compared between AAH and LUAD

samples to identify regions that were either aberrant in both samples or only in one of the

tissues. To describe heterogeneity between the samples, I then quantified proportions of

the genome exhibiting AI in both samples and proportions of the genome harboring AAH

or LUAD-specific AI. For each patient, markers profiled in the SNP genotyping array were

annotated as either being in an event in AAH, LUAD or both tissues. Based on this, the

proportion of markers within AI events in matched AAH and LUAD specimens were deter-

mined as shared events, while those specific to only one of the tissues were determined as
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the proportion of AAH-specific and LUAD-specific events. In addition, for shared AI events

between matched AAH and LUAD, the regions exhibiting over-representation of opposite

haplotypes were identified using RECUR [49] and excluded since they might be suggestive

of independent events or secondary events. Phylogenetic trees were then constructed using

these shared and tissue-specific AI events between the LUAD and AAH for each patient

using the ape package in R [50].

All patients profiled using SNP genotyping arrays (with the exception of patient 23)

were also profiled for single nucleotide mutations (SNVs) using ultra-deep DNA targeted

sequencing of a panel of 409 known tumor associated genes (Sections 2.2.3,2.2.6). Given

the prevalence of EGFR mutations in this cohort, the samples exhibiting mutations in this

oncogene were assessed for patterns in their overall genomic AI burden. The presence of

EGFR p.L858R in the tumor sample of patient 23 was confirmed by digital PCR as described

previously (Section 2.2.7). The identified AI events and SNVs in known oncogenes and

tumor suppressors [5, 42] were assessed for patterns of two-hit mutations (AI and SNV) in

AAH and LUAD as well as shared-first hit (AI or SNV) with LUAD-specific second hit (AI

and SNV).

2.3 Comprehensive genomic and transcriptomic characterization of AAHs

2.3.1 Mutation profiling

Exonic single nucleotide mutations (SNVs) within a targeted cancer gene panel consisting

of 409 cancer associated genes were identified in AAHs and LUADs of our cohort of 22

patients. A total of 67 samples were analyzed, with one case having two tumor tissues

profiled. The mutations in AAH and LUAD were identified using the matched normal lung

tissue as a comparator. All 45 AAHs and LUADs exhibited at least one somatic mutation

(exonic, splicing or in UTRs) with a mean of 6.1 variants (min = 1, max = 19) in AAHs

and 10.6 (min = 1, max = 60) in LUADs (Figure 2.3).

Non-smokers displayed an expected lower somatic mutation burden than ever-

smokers in the LUADs (5.4 vs 14.5); however, they exhibited a similar burden in AAHs (6.4

vs 5.9; Figure 2.4).
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Figure 2.3: Mutation burden in AAH and LUAD. Somatic point mutations in exonic,
splicing and UTR regions within the 409 genes sequenced in the panel were identified for
the 45 specimens (22 AAH and 23 LUAD). Point mutation burdens for AAH and LUAD
were plotted as boxplots.

Figure 2.4: Mutation burden in AAH and LUAD based on tobacco history. Spec-
imens (AAH and LUAD) were classified based on tobacco history (non-smoker and ever-
smoker) in all 22 patients. Point mutation burdens for the tissues from non-smokers and
smokers were plotted as boxplots.
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To gain further insights into point mutations in the pathogenesis of AAH, nonsyn-

onymous mutations in genes considered to be bona fide drivers of cancer were interrogated

[42]. Mutations in genes previously determined by TCGA to be significantly recurrently

altered in LUAD were also examined [42, 5]. Figure 2.5A shows 17 cases that exhibited a

mutation in either driver gene set within their AAH specimens. The paired LUADs were

also plotted depicting mutations in genes previously established by the TCGA to be sig-

nificantly mutated in LUAD. Figure 2.5B describes a tissue level analysis of mutations in

AAH and LUAD samples to identify mutated genes, from the same set of driver genes, that

were common or disparate between AAH and LUAD. Figure 2.5C shows a lollipop plot for

mutations in the BRAF oncogene and their prevalence in AAHs of our cohort.

AAHs from five patients (23%) exhibited somatic activating mutations in the BRAF

oncogene (Figure 2.5A). Interestingly, the BRAF mutations were not detected in the paired

LUAD specimens (Figure 2.5A; Figure 2.5B). Four of the five AAHs exhibited a BRAF

p.K601E mutation, the other AAH contained a BRAF p.N581S variant (Figure 2.5C).

KRAS was the second most recurrently mutated gene in AAHs (four cases, 18%; Figure

2.5A). All four KRAS -mutant premalignant tissues were from ever-smokers, in contrast to

BRAF -mutant AAHs (from three non-smokers and two ever-smokers; Figure 2.5A). Also,

AAH KRAS and BRAF mutations showed mutual exclusivity (Figure 2.5A). An interesting

observation was that for four of the five cases (80%) with BRAF -mutant AAHs, their paired

LUADs harbored activating mutations (three p.L858R in exon 21 and one p.S752F in exon

19) of the EGFR oncogene (Figure 2.5A). The other LUAD exhibited inactivating mutations

in KEAP1 and STK11 tumor suppressors. LUADs of cases with the KRAS -mutant AAHs

exhibited mutations in other drivers besides KRAS such as TP53 (Figure 2.5A).

We further validated by digital PCR, the presence of all sequencing derived BRAF

and KRAS mutations in AAHs, and the EGFR p.L858R mutation in both AAHs and

LUADs that exhibited these patterns (Figure 2.5). Variant allele frequencies (VAFs) based

on digital PCR were consistent with sequencing-based VAFs for these loci (Table 2.3).

TSC1 was the most frequently mutated tumor suppressor in AAHs (13.6%; two

nonsense and one missense mutation; Figure 2.5A). We also noted other mutated oncogenes

(EGFR and JAK3 ) and tumor suppressors (CDKN2A and TP53 ) in AAHs (Figure 2.5A).
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Figure 2.5: Driver mutation profiles in AAH. Somatic nonsynonymous mutations in
AAHs and LUADs were identified. (A)Mutations in previously established cancer driver
genes were examined. AAH specimens that exhibited a mutation in either driver gene set
were plotted. The paired LUADs were also plotted depicting mutations in known LUAD
driver genes. Shown within the red panel is the enrichment of EGFR mutations in LUAD
paired to BRAF -mutant AAH. (B) A tissue level analysis of mutations in AAH and LUAD
specimens was performed to identify mutated genes, from the same set of driver genes
surveyed in panel A, that were common or disparate between AAH and LUAD. (C) Lollipop
plot for mutations (p.K601E; n = 4 and p.N581S; n = 1) in the BRAF gene and their
prevalence in AAH specimens.

25



Gene Mutation
Protein
Change

Case Tissue
Digital
PCR
assay

DNAseq
derived
VAF

Digital
PCR
derived
VAF

BRAF chr7:140453134T>C p.K601E 11 AAH BRAF 478 0.3656 0.3853
BRAF chr7:140453134T>C p.K601E 12 AAH BRAF 478 0.1609 0.1882
BRAF chr7:140453193T>C p.N581S 14 AAH BRAF 462 0.0966 0.1208
BRAF chr7:140453134T>C p.K601E 15 AAH BRAF 478 0.2197 0.2116
BRAF chr7:140453134T>C p.K601E 16 AAH BRAF 478 0.2517 0.2251
EGFR chr7:55259515T>G p.L858R 2 LUAD EGFR 6224 0.2139 0.1977
EGFR chr7:55259515T>G p.L858R 7 LUAD EGFR 6224 0.1519 0.1753
EGFR chr7:55259515T>G p.L858R 12 LUAD EGFR 6224 0.3157 0.2728
EGFR chr7:55259515T>G p.L858R 13 LUAD EGFR 6224 0.0773 0.0873
EGFR chr7:55259515T>G p.L858R 14 LUAD EGFR 6224 0.2602 0.2558
EGFR chr7:55259515T>G p.L858R 16 AAH EGFR 6224 0.2087 0.2208
EGFR chr7:55259515T>G p.L858R 16 LUAD EGFR 6224 0.2681 0.2845
EGFR chr7:55259515T>G p.L858R 18 LUAD EGFR 6224 0.2379 0.2456
EGFR chr7:55259515T>G p.L858R 22 AAH EGFR 6224 0.1863 0.1979
KRAS chr12:25398284C>G p.G12A 1 AAH KRAS 522 0.3499 0.3293
KRAS chr12:25398285C>A p.G12C 4 AAH KRAS 516 0.1492 0.132
KRAS chr12:25398285C>A p.G12C 19 AAH KRAS 516 0.1078 0.121
KRAS chr12:25380275T>A p.Q61H 20 AAH KRAS 555 0.1496 0.1571

Table 2.3: Validation of specific BRAF, KRAS and EGFR mutations using digital PCR.
Variant allele frequencies (VAF) in both platforms are shown. DNAseq derived VAF corre-
sponds to the VAF derived from deep targeted DNA sequencing.
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Mutated Genes

Common

APC, AR, CDKN2A, CREBBP, CSMD3, DST, EGFR,
EPHA3, ESR1, GATA3, GUCY1A2, JAK3, KAT6B,
KEAP1, KMT2D, KRAS, LPHN3, LRP1B, NF1, NLRP1,
NUP214, PBX1, PIK3CG, PTPRD, SETD2, SYNE1,
TP53, TSC1

AAH-specific

AMER1, AURKC, BRAF, CASC5, CDKN2B, CRTC1,
CYP2C19, ERBB2, ERBB3, FLI1, GPR124, IKBKB,
IRS2, ITGB3, KDM5C, MDM4, MTOR, MYH11, NIN,
PKHD1, RB1, RET, SH2D1A, SOX11, TAF1L, TCF3,
TCF7L1, TET2, TFE3

LUAD-specific

ABL2, ADAMTS20, AFF1, AKAP9, ARID1A, ARID2,
ARNT, ATM, ATR, ATRX, BCL11A, BCL11B, BTK,
BUB1B, CARD11, CDH1, CDH2, CDH20, CMPK1,
COL1A1, CRKL, CTNNA1, DCC, DICER1, EP400,
ERBB4, ERCC1, FH, FLT1, FOXL2, FOXP1, GNAS,
GRM8, HOOK3, IDH1, IL7R, ITGA9, KMT2A, KMT2C,
LCK, MAGI1, MARK1, MEN1, MET, MN1, MSH6,
MTR, MTRR, MUTYH, MYC, NBN, NCOA2, NOTCH1,
NOTCH2, NOTCH4, NTRK3, PAK3, PARP1, PAX3,
PBRM1, PDGFRA, PDGFRB, PIK3C2B, PIK3CA,
PMS1, POT1, PTCH1, PTPRT, RECQL4, RUNX1T1,
SAMD9, SEPT9, SMARCA4, SMO, STK11, TAF1, TET1,
THBS1, TLR4, TNK2, TPR, USP9X, WAS, ZNF521

Table 2.4: Genes mutated in AAHs and LUADs.

Additionally in this cohort, 28 genes were mutated in both AAHs and LUADs (e.g., KRAS,

TP53, KEAP1, CDKN2A), 84 were found only in LUADs (STK11, PIK3CA) and 29 were

found only in the preneoplastic lesions (AMER1, BRAF, KDM5C, ERBB2 ) (Figure 2.5B;

Table 2.4). Even for genes that were shared between AAH and LUAD tissues, there were

notable examples of differential frequency (e.g., KRAS more common in AAH; EGFR and

TP53 more common in LUAD; Figure 2.5A). On further examination of these 28 shared

genes, we found that EGFR and KAT6B exhibited the same mutations in both tissues.

There was also an enrichment of different mutations in codon 12 of KRAS in both the

tissues. Our findings underscore subgroups of AAH with different mutated driver genes

(BRAF vs KRAS ) suggestive of potentially different mechanisms in the pathogenesis of

these premalignant lesions.
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2.3.2 Expression profiles in the development and progression of AAH

Next I sought to characterize expression profiles signifying the development of AAH from

normal lung tissue (NL), and its progression to LUAD. Transcriptome sequencing of a subset

of the cases and samples (Table 2.2) using a capture method targeting over 20,000 Refseq

genes.

2.3.2.1 Global gene expression patterns

I identified 1,008 genes differentially expressed in at least one of three tissue types (Figure

2.6). Using one-sided t-tests to interrogate the two-step (NL to AAH and AAH to LUAD)

modes of differential expression, I identified eight patterns or clusters of expression among

the global gene expression profiles (Figure 2.6). These consisted of the following: decrease

(n = 214) from NL to AAH and from AAH to LUAD; increase (n = 204) from NL to AAH

and from AAH to LUAD; decrease (n = 116) and increase (n = 146) from NL to AAH alone

with no change from AAH to LUAD; decrease (n = 85) and increase (n = 126) from AAH to

LUAD alone with no change from NL to AAH and, less prevalent forms with no net change

in expression such as an increase (n = 33) or decrease (n = 84) in AAH alone relative

to other tissues. A pathway based enrichment analysis for genes in each cluster further

identified potentially altered signaling pathways (Figure 2.6). This analysis pinpointed

decreased anti-tumor T-helper (Th1) immunity, and conversely, increased pro-tumor Th

2-based immune response and signaling in both phases, the development of AAH from NL

and their progression to LUAD. Inhibition of IFN-γ and TGFB1 signaling occurred early in

AAH, when compared to NLs, and reduced surfactant protein signaling occurred thereafter

in LUAD only. Pathway and gene set enrichment analysis also revealed an activation of B-

cell receptor, CSF2 (indicative of pro-tumor immune response), MYC and ERBB2 signaling

in AAH and LUAD (Figure 2.6). Activation of WNT and β-catenin signaling as well as

modulation of gene sets associated with increased immune cell (phagocytes) migration were

activated in AAH relative to NL (Figure 2.6). Gene sets associated with enhanced cell cycle

and proliferation as well as reduced apoptosis were modulated in LUAD relative to AAH

or NL.
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Figure 2.6: Expression profiles differentially modulated in development of AAH
and LUAD. Genes (n = 1008) differentially expressed between the three tissues (AAH
vs. NL, LUAD vs. NL, or LUAD vs. AAH) were analyzed by hierarchical clustering (red,
upregulated relative to median sample; blue, downregulated relative to median sample).
Genes were grouped into eight different patterns, with patterns of differential expression in
each gene cluster schematically depicted on the right. Pathways and gene set enrichment
analysis were performed and pathways deregulated in each cluster of genes are depicted in
red (activation) and blue (inhibition) alongside the heatmap. Mutations status of EGFR,
KRAS, and BRAF for AAH and LUAD specimens is depicted below.
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Then, I compared and contrasted gene expression among three groups of AAHs

based on driver gene mutation status identified above: BRAF mutant, KRAS mutant and

BRAF/KRAS wild type (WT). 327 differentially modulated genes were observed between

the three different groups of AAHs (Figure 2.7). Accordingly, these gene features indeed

clustered the three groups separately based on the driver mutation status but with BRAF -

and KRAS -mutant AAHs grouped closer together than with BRAF/ KRAS WT AAHs

(Figure 2.7). Among the genes that were enriched in the BRAF -mutant AAHs were the

cytokinesis promoting gene KIF5C and the cell proliferation promoting transcription factor

(MYC Associated Factor X) MAX, typically associated with MYC oncoprotein[51](Figure

2.7). On the other hand, KRAS -mutant AAHs displayed up-regulated expression of tumor

necrosis factor receptor superfamily members 9 and 10B (TNFRSF9 and TNFRSF10B), the

NF-κB subunit RELB and the proliferation promoting ubiquitin ligase UBE2C (Figure 2.7).

Of note, both BRAF -mutant and KRAS -mutant AAHs exhibited suppressed expression

of the epithelial mesenchymal transition-promoting tyrosine kinase receptor AXL relative

to BRAF/KRAS WT AAHs (Figure 2.7). These findings suggest shared and disparate

expression programs among AAHs with activating mutations in the oncogenic GTPases

BRAF and KRAS.

2.3.2.2 Immune marker gene expression profiling

Accumulating evidence suggests a pivotal role for the host immune response in the evolution

of cancer as well as dynamic interplay between emerging tumor cells and immune-based

expression programs [52, 53]. We sought to begin to understand contextual immune marker

profiles in the development and progression of AAHs. Among the global gene expression

profiles, genes with known roles in immune signaling based on an annotated and a priori

list were assessed. I identified 131 markers of immune response that were differentially

modulated among NLs, AAHs and LUADs (Figure 2.8).

Overall, the immune markers followed similar patterns or clusters of expression

described above. This analysis revealed that IL12A, a cytokine most notably associated

with an anti-tumor immune response [54], was decreased in AAHs and LUADs relative to

NLs (Figure 2.8). Conversely, the cytokines CXCL13 and CXCL14, indicative of activated
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Figure 2.7: Differential gene expression based on driver mutation status in AAH.
AAHs were subgrouped based on BRAF and KRAS mutation status: BRAF -mutant,
KRAS -mutant, and BRAF/KRAS wild-type. Genes (n = 327) differentially expressed
between the three AAH subgroups were identified and analyzed by hierarchical cluster-
ing (red, upregulated relative to median sample; blue, downregulated relative to median
sample).
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Figure 2.8: Deregulation of immune signaling in the molecular pathogenesis of
AAH. Expression profiles for an a priori list of immune markers was compiled and studied
to identify differentially expressed immune genes (n = 131). The genes were divided into
different clusters based on patterns of differential expression between NL, AAH, and LUAD.
Patterns of differential expression in each gene cluster are schematically depicted on the
right. Select immune markers present in the major clusters are also depicted on the right.
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B-cell chemotaxis and signaling [55, 56], were up-regulated in AAHs and LUADs (Figure

2.8). Moreover, aberrant immune marker expression occurred early in AAHs, relative to NLs

(Figure 2.8). I found early and significantly decreased expression of prototypical markers

of the anti-tumor immune response (e.g.,GZMB) in AAHs relative to NLs (Figure 2.8). On

the other hand, AAHs exhibited increased expression of the tumor-supportive chemokine

receptor CCR2 (Figure 2.8) [57]. Of note, I found that the major immune checkpoint

cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 ) [58] was significantly up-regulated

in LUADs relative to AAHs but not in the premalignant lesions relative to NLs (Figure

2.8) suggesting that aberrant immune checkpoint function by CTLA-4 may be implicated

in progression of AAH to LUAD. These findings accentuate the role of aberrant immune

function and signaling early on in the development and progression of AAH.

Figure 2.9: Abundance of tumor-infiltrating immune cells in the different tissues.
Expression profiles were used to estimate the abundance of six tumor-infiltrating immune
cells. Patterns of their abundance across the three tissue types (NL, AAH and LUAD) are
depicted as boxplots.

The gene expression data was also analyzed to estimate the abundance of tumor-

infiltrating immune cells using TIMER [47]. The results are summarized in Figure 2.9.
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Particularly, our analysis revealed progressively and significantly increasing levels of B cells

and CD4+ T cells from NL to AAHs and finally LUADs. In contrast, we identified signifi-

cantly decreasing levels of CD8+ T cells from NL to AAH to LUAD. These results point to

the relevance of immune activation early in the development of AAHs, perhaps even prior

to the occurrence of mutations in these preinvasive lesions.

2.3.3 Chromosomal instability in AAH and LUAD

A haplotype-based computational framework, hapLOH [48], was used to infer subtle genome

wide AI, including alterations present at lower cellular fractions. Among the 48 samples in

our cohort profiled using SNP genotyping arrays, AI was detected in nine AAHs (56%), 15

LUADs (94%) and four normal lung parenchyma tissues (25%) (Figure 2.10).

Figure 2.10: Chromosomal allelic imbalance burden in normal, AAH and LUAD
tissues. Regions with subtle chromosomal allelic imbalance (AI) were identified in the
normal (N), AAH and matched LUAD tissues using genome-wide genotype array profiling.
AI burdens, defined as a percent of the genome, are represented by box plots for each tissue
type (N, AAH and LUAD). The burden for each patient is shown as a point overlaid on the
boxplots. The points are colored red if the patient had a smoking history and black if the
patient was a non-smoker.

I identified 53 chromosome-arm AI events (≥ 50% of chromosomal arm) and 19

focal AI events (<50% of chromosomal arm) in AAHs; and 210 arm-level AI events and 97

focal events in LUADs. Overall, the detectable AI burden (defined as a percent of genome

exhibiting AI) in AAHs was significantly lower than LUAD (Wilcoxon, P value=0.0002;

Figure 2.11). While AAHs showed significantly higher AI burden in lifetime smokers com-

pared to non-smokers (Wilcoxon, P value = 0.005), their matched LUADs showed similar
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distributions of AI burden between non-smokers and smokers (Figure 2.10, Figure 2.11).

Of note, the AI burdens of EGFR-mutant non-smoker LUADs were larger than those of

smokers as well as non-smoker LUADs without the mutation (Figure 2.11).

Figure 2.11: Chromosomal allelic imbalance burden in AAH and LUAD based on
tobacco history. AI burdens, defined as a percent of the genome, are represented by box
plots for each tissue type (AAH and LUAD) based on tobacco history (never-smoker and
ever-smoker). The burdens for each individual case are overlaid as points on the boxplot.
Specifically, samples exhibiting EGFR point mutations are shown as red dots.

2.3.3.1 Genomic landscape of chromosome-arm and focal allelic imbalance events

We then assessed large AI events that spanned chromosome arms. Recurrent allelic loss

events in 17p harboring tumor suppressors TP53 (17p13) and PER1 (17p13), were the

most frequently detected chromosomal change in AAHs of our cohort (n = 6; Figure 2.12).

Additionally, five of these six cases with 17p loss events in AAHs were identified in patients

with a history of tobacco use. Other recurrent AI events in AAHs included the following:

gain of 1q, harboring oncogene ABL2 (1q25) and cell proliferation genes PARP1 (1q42) and

PBX1 (1q23); gain of 18q harboring BCL2 (18q21); loss of 8p harboring tumor suppressor

MTUS1 (8p22); loss of 16q encompassing CYLD (16q12), CDH1 (16q22); loss of 19p

harboring KEAP1 (19p13), STK11 (19p13), SMARCA4 (19p13); and loss of 19q as well

as mixed events on 13q (n=3) (Figure 2.12). The matched LUADs exhibited more complex

patterns of allelic imbalance across the entire genome (Figure 2.12). These tissues also

showed frequent gains spanning known oncogenes including those on 8q (MYC : 8q24), 7p

(EGFR: 7p11) and 2p (DNMT3A, ALK : 2p23); they showed loss or cnLOH events harboring
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Figure 2.12: Genome-wide chromosome-arm allelic imbalance events in matched
AAH and LUAD. The distribution of chromosomal arm events in AAHs and LUADs are
shown, with rows representing individual patients and columns representing chromosome
arms. Each individual row is further divided to show profiles of matched AAH and LUAD
from that individual. The events are annotated as gain (red), loss (blue) or copy-neutral
loss of heterozygosity (green) while unclassifiable events are annotated as subtle (gray). The
overall burden across all chromosomal arms is shown in the bar plots at the top, while allelic
imbalance burdens in each sample are shown on the right. Patients are also annotated to
denote their clinicopathological features.
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Chr Start End Sample1 Sample2 Haplotype Correlation P value

6 150279 57127760 1-LUAD 1-AAH -0.725958882 0.00E+00
6 69077820 170823119 1-LUAD 1-AAH -0.336894721 3.38E-90
20 371781 27500000 1-LUAD 1-AAH -0.467812513 1.50E-61
6 205213 9189039 1-AAH 1-LUAD -0.81494625 2.33E-119
6 16751926 57169715 1-AAH 1-LUAD -0.792269377 2.47E-245
6 67420037 166042705 1-AAH 1-LUAD -0.340701478 7.82E-86
19 39014184 59083268 1-AAH 1-LUAD -0.350611209 3.13E-28
20 61098 10834078 1-AAH 1-LUAD -0.520616776 1.69E-40
11 18742043 45419113 15-LUAD 15-N -0.345607357 7.23E-26
18 19830977 77938901 15-LUAD 15-N -0.425760462 1.54E-95
11 18742043 45419113 15-LUAD 15-AAH -0.344892749 9.24E-26
18 19830977 77938901 15-LUAD 15-AAH -0.405048942 8.39E-86
17 72487 24000000 16-LUAD 16-AAH -0.763214541 1.23E-192
19 1095581 7205240 16-LUAD 16-AAH -0.844794475 9.81E-84
19 50751361 59083268 16-LUAD 16-AAH -0.854232301 1.12E-154
17 72487 16819909 16-AAH 16-LUAD -0.803706227 1.41E-205
19 367313 26500000 16-AAH 16-LUAD -0.313266578 3.80E-22
19 51136844 58819113 16-AAH 16-LUAD -0.866329216 1.42E-155
8 68295959 101670653 19-LUAD 19-AAH -0.308031765 1.46E-21
12 1456930 18459387 23-AAH 23-LUAD -0.438251952 1.03E-39

Table 2.5: Mirrored events between matched tissues exhibiting opposite haplotypes in excess

tumor suppressors such as those on 12q (ARID2 : 12q12, MLL2 : 12q13), 3p (SETD2 : 3p21,

VHL: 3p25, FOXP1 : 3p13), 9q (KLF4 : 9q31, PTCH1 :9q22, GNAQ : 9q21, TSC1 : 9q34,

ABL1, NOTCH1 : 9q34), 18q (SMAD4 : 18q21), and 6q (FOXO3 : 6q21). Although the

overall AI burden in AAHs was seemingly lower than in LUADs, four cases exhibited similar

burdens across these matched tissues (Figure 2.12). These cases also exhibited high sharing

of specific AI events in AAHs and matched LUADs, including loss of chromosomal arms 17p

(TP53, PER1 : 17p13), 13q (RB1 : 13q14), 19p (KEAP1, STK11, SMARCA4 : 19p13), 19q

and 9q (KLF4 : 9q31, PTCH1 :9q22, GNAQ : 9q21, TSC1 : 9q34, ABL1, NOTCH1 : 9q34).

Of note, we identified AI events that exhibited patterns of mirroring (opposite haplotypes

in excess across the same event) between matched AAH and LUAD using RECUR [49].

The mirrored events are summarized in Table 2.5.

In addition to chromosomal-arm AI events, we also identified subtle focal events in

AAH of six patients that included 11p gain encompassing HRAS and IGF2 (11p15), 5q gain
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spanning RAD50 (5q31), FGFR4 and NSD1 (5q35), 19p loss comprising STK11 (19p13),

3p amplification at FOXP1 (3p13), 11p gain encompassing the oncogene WT1 (11p13), 17q

loss harboring NF1 (17q11) and 4q gain covering KIT (4q12) (Figure 2.13). Finally, AI

detected in the four normal lung parenchyma tissues included three patients with smoking

history and exhibited large chromosomal loss events on 19p and 19q, gain of 18q as well as

several subtle, yet, large events on 1q, 6q, 7q, 8q, and 20q (Figure 2.13). Three of these

cases exhibited events that were shared with matched LUAD specimens and the remaining

one case showed events shared with its matched AAH and LUAD tissues (Figure 2.13).

Figure 2.13: Chromosomal arm and focal allelic imbalance events in matched
normal lung parenchyma, AAH and LUAD. The genomic locations of the identified
chromosomal allelic imbalance events were plotted for all 48 samples of matched normal
lung parenchyma, AAH and LUAD from 16 patients. Allelic imbalance regions are first
classified as gains (red) or losses (blue), the intensity of which is based on the log R ratio of
the event. The remaining events are annotated in green as subtle and copy-neutral loss of
heterozygosity (cnLOH) events, intensity of which is based on B-allele frequency deviation
for the event region, with darker shaded regions representing increased evidence for cnLOH.
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2.3.3.2 Genomic evolution processes in AAH and LUAD.

I used the identified chromosomal-arm and focal AI events of matched AAH and LUAD

tissues for all patients to construct phylogenetic trees depicting the genomic evolution of

these tissues. Mirrored events (2.5) were excluded from this analysis. Seven patients ex-

hibited regions of shared AI events between matched AAH and LUAD forming trunks of

phylogenetic trees (Figure 2.14(A)).

(A) 
Patient 1 Patient 15 Patient 23 Patient 19 

Patient 6 Patient 16 Patient 2 

 (B)
Patient 5 Patient 7 Patient 11 Patient 13 

Patient 17 Patient 18 Patient 21 Patient 22 

Patient 10 

Figure 2.14: Phylogenetic reconstruction of truncal, AAH-specific and LUAD-
specific chromosomal aberrations. Matched AAH and LUAD specimens from individ-
ual patients were assessed for patterns of shared as well as tissue-specific allelic imbalance
events and phylogenetic rooted trees were constructed. Cases exhibiting any evidence for
shared events are shown in (A) and remaining cases are shown in (B). Vertical distances
in each tree are scaled to the proportion of shared as well as tissue-specific events. Shared
events, thereby trunks of the trees, are shown in dark blue; tissue-specific events are shown
separately for AAH (orange) and LUAD (brown).
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The length of the trunk, and therefore the extent of shared events between matched

AAH and LUAD varied across patients. Truncal events included chromosomal arms that

spanned known lung cancer associated genes such as loss or cnLOH events harboring tumor

suppressors on 17p (TP53, PER1 : 17p13) , 8p (MTUS1 : 8p22), 9p (CDKN2A: 9p21),

9q (KLF4 : 9q31, PTCH1 : 9q22, GNAQ : 9q21, and ABL1, NOTCH1, TSC1 : 9q34), 19p

(KEAP1, STK11, SMARCA4 : 19p13), as well as gains of chromosomal arms encompassing

oncogenes on 8q (MYC : 8q24), 12p (KRAS : 12p12), 1q (ABL2 : 1q25). Patient 1 showed the

largest percentage of shared AI events (36.9%) that included subtle events on chromosomal

arms 3p, 5q, 6p, 6q, 9p, 9q, 12p and 17p; LUAD-specific events such as 1p, 7p and 12q and

AAH-specific events such as 18q, 19p and 19q. Patients 15 and 23 also exhibited shared AI

events between AAH and LUAD (15.6% and 16.0% respectively) that included chromosomal

arms 1q, 11p, 18q and 19p in patient 15 and 1p, 12p, 12q, 16q, 17p, 18q, 20p and 20q in

patient 23. While patient 15 showed similar overall AI burdens in both AAH and LUAD

tissues, patient 23 showed an overall higher AI burden in LUAD compared to its AAH with

LUAD-specific AI events including 1p, 2q, 3p, 7p, 9p, 9q and AAH-specific AI events on 4q

and 13q. Patient 6 and 19 exhibited shared AI events in a small proportion of the genome

(5.2% and 6.1% respectively) followed by patients 2 (2.3%), and 16 (3.2%) showing much

lesser sharing between matched AAH and LUADs. Further, among all seven cases with

evidence for shared AI between matched AAH and LUAD, a majority were identified as

smokers (6 of 7) with only one case identified as a non-smoker (patient 16). In the remaining

cases, the AAH and LUAD showed distinct and independent AI profiles (Figure 2.14 (B).

These cases exhibited private somatic AI events unique to AAH or LUAD such as those on

1q, 7p, 7q, 13q and 16q. The distribution of shared AI events as well as AAH-specific and

LUAD-specific AI events across the genome is shown in Figure 2.15.

2.3.3.3 Somatic multi-hit progression of AAH to LUAD

Finally, I also integrated my previous analysis of single nucleotide mutations (SNVs) within

this cohort to identify cancer driver genes exhibiting somatic multi-hit mutational processes

(i.e. mutation and a chromosomal-arm or focal AI events encompassing the mutated gene).

While the LUADs exhibited somatic-two hit events in known cancer associated genes such
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Figure 2.15: Distribution of shared and tissue-specific allelic imbalance events
across chromosomal arms. The identified allelic imbalance events across all patients
were averaged and assessed for chromosomal patterns of shared as well as tissue-specific
events. A stacked bar plot representing the proportion of normal region (grey), shared AI
(blue), AAH-specific AI (orange), LUAD-specific AI (brown) and normal tissue-specific AI
(black) for each chromosome arm is shown.

as EGFR, TP53, KRAS, CDH1, JAK3, ARID1A, ARID2, CDKN2A, GNAS and MSH6,

I identified only two AAH cases with such patterns. One case exhibited a KRAS mutation

and a 12p gain, that was shared between its AAH and LUAD tissues and another case

with an AAH-specific BRAF/7p gain event (Figure 2.16). I also identified an additional

two cases that exhibited a single shared AI event (i.e. present in AAH and LUAD) with a

LUAD-specific second mutation hit (SNV) such as subtle AI on 9q/NOTCH1 and 17p/TP53

(Figure 2.16). Table 2.6 summarizes these multi-hit patterns observed in this cohort.

2.4 Discussion

There is a lack of understanding of the molecular aberrations leading to the initiation as

well as the progression of AAH, the only known precursor lesion to LUAD. The challenges in

physical acquisition of incidental AAHs, in addition to the low mutant cell fractions that are

typical for these samples, have limited the molecular characterization of these premalignant

lesions to date. In this chapter, I described our findings of the mutation and gene expression

landscapes of AAHs in comparison with normal tissues and early-stage LUADs (matched)

from the same patients.
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Figure 2.16: Progressive and somatic two-hit processes in matched AAH and
LUADs. Known cancer driver genes within regions of allelic imbalance or with single
nucleotide mutations (SNVs) were examined. The figure depicts genes exhibiting somatic
two-hits (both SNVs and AI; red) in AAHs and LUADs as well as those exhibiting a first
shared hit (either SNV: orange or AI: yellow) in the AAH accompanied by a second tumor-
specific hit in the matched LUAD. For samples with allelic imbalance, the event types are
shown as bar plots on the right, accompanying each gene, in both the AAH and LUAD
specimens.
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Case AAH LUAD

1 KRAS ; 12p subtle KRAS ; 12p subtle
1 9q subtle NOTCH1 ; 9q subtle
2 - EGFR; 7p gain
7 - EGFR; 7p gain
11 BRAF ; 7q gain -
15 - KEAP1 ; 19p loss
15 - STK11 ; 19p loss
16 TP53 ; 17p loss 17p loss
17 - CDH1 ; 16q subtle
17 - ARID1A; 1p gain
17 - ARID2 ; 12q subtle
17 - CDKN2A; 9p loss
17 - GNAS ; 20q subtle
17 - PDGFRA; 4q gain
19 17p subtle TP53 ; 17p subtle
19 - JAK3 ; 19p loss
19 - PBRM1 ; 3p subtle
19 - MSH6 ; 2p subtle

Table 2.6: Multi-hit somatic mutational events in matched AAH and LUAD

2.4.1 Significance of findings

We delineated subgroups of AAHs with mutually exclusive and distinct driver gene point

mutations; namely BRAF -mutant (both nonsmokers and ever-smokers), KRAS -mutant

(ever-smokers only) and KRAS/BRAF WT AAHs. We also identified the enrichment of

chromosomal aberrations such as the loss of 17p in AAHs of this cohort, particularly in

ever-smokers. By agnostic transcriptome sequencing analysis, we also presented various

patterns of expression profiles and pathways in the molecular pathogenesis of AAH. Fur-

ther analysis underscored markers of immune function that are significantly differentially

modulated, early on, in AAH (downregulation of GZMB) relative to NL as well as those

deregulated in LUADs relative to AAHs (e.g., CTLA-4 ). Our findings highlight early re-

current driver mutations, chromosomal aberrations, gene expression profiles, and markers

of immune response in AAH that offer a better understanding of the molecular pathogenesis

of these premalignant lesions.

Our study also underscores previously uncharacterized properties of these AAH
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BRAF mutations, namely mutual exclusivity with KRAS and correlation with smoking

patterns. Whereas KRAS -mutant AAHs were from ever-smokers, BRAF mutations in

AAHs occurred in both non-smokers and ever-smokers. The BRAF p.K601E variant has

been previously noted in preneoplastic melanocytic lesions and melanomas in situ as well

as in thyroid adenomas [59, 60, 61], thus pointing to the probable role of BRAF in early

stages of oncogenesis (i.e., development of preneoplasia such as AAH). The BRAF p.K601E

mutation was also found in small proportions of cancers of the thyroid, colon and skin

[62]. This may suggest that an enrichment for this hotspot driver mutation highlights a

crucial mechanism for AAH and LUAD pathogenesis. Indeed, studies by the TCGA [5]

and our group [63] showed relatively infrequent (∼ 3%) BRAF mutations in LUADs. Yet,

its absence in our sample set of LUADs, including in tumor specimens from patients with

BRAF -mutant AAH is intriguing. It cannot be neglected that this may, in part, be due to

our relatively modest set of samples.

Statistical approaches to discover large chromosomal alterations in AAH samples

may be limited to mutant cell fractions of 15% with standard SNP array technology. Here

we applied hapLOH, a sensitive, haplotype-based method [48] that offers resolution perhaps

down to 5% mutant fraction. From our results, the frequency of detectable allelic imbalance

events in these samples may at first appear high. However, aspects of our analysis, study

design, and findings in other nonmalignant tissues serve to contextualize these findings.

First, the increased resolution from using our statistical approach probably captures a

critical region of the within-sample mutation frequency spectrum, specifically, mutations in

a small proportion of cells, consistent with their involvement in early stage of development

and the heterogeneous nature of the tissues. Second, the use of SNP arrays, instead of

exome sequencing, allows for more power to detect copy number changes, particularly those

leading to AI. Third, we applied additional statistical testing; when we detected an event

in a tissue, we specifically looked at that same region in matched tissues. Finally, rates

of half for premalignant lesions or field cancerization samples demonstrating detectable AI

have been observed in the lung [13] and colon [64].

Chromosomal aberrations that we identified not only corroborate previously de-

scribed LOH events but also provide better resolution of genome-wide gain, loss and cn-
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LOH, including previously undocumented aberrations such as those on chromosomes 1,7,

8, 12 and 19. Chromosomal aberrations such as loss and cnLOH of arms 9p, 12q, 17p, 19p

and 19q and gain of 1q, 8q, 18q, 7p and 7q in AAHs of our cohort have been shown in pre-

vious studies of chromosomal changes in early-stage non-small cell lung cancer (NSCLC),

including EGFR-mutant LUADs, of Asian patients, that form a major subset of our cohort

[65, 66, 67, 68, 69, 70]. Evidence for shared chromosomal aberrations between matched

AAHs and LUADs was primarily observed among smokers in our cohort, alluding to the

role of field cancerization in the development of these preneoplastic lesions. Further that

these changes are not only shared with NSCLCs but exhibit reduced overall proportions

in AAHs compared to matched LUADs are consistent with the morphological changes in

these lesions and might suggest their role in the malignant transformation of these prema-

lignant lesions. Chromosomal aberrations identified in our study have also been previously

described in premalignant lesions of other tumor sites [71, 72]. For example, the most

common event in AAHs of our cohort, 17p loss, has been previously described as an early

event, preceding mutations in TP53, and a predictor of neoplastic progression in Barretts

esophagus, a premalignant lesion which predisposes to esophageal adenocarcinoma [73, 74,

71, 72]. Another study described the importance of loss events such as on 17p, 8p and 13q

in addition to early LOH events of 3p and 9p in conferring increased relative risk of malig-

nant transformation in oral premalignant lesions [75]. Further, the higher incidence of 17p

loss events observed here compared to previous studies [23], particularly in smokers, might

be attributable to the East Asian origin of this cohort. These findings implicate a role of

chromosomal imbalances early in the development and progression of these preneoplastic

lesions.

Complementing our DNA analysis is our agnostic transcriptome sequencing analysis

that revealed differential gene expression programs that occur in different stages of LUAD

pathogenesis – early in development of AAH from normal tissue, in LUADs, or in both

lesion types. Several altered gene expression programs and pathways that we identified in

AAHs of our cohort were also independently identified in other premalignant and invasive

tumor tissues. WNT/β-catenin signaling has been previously shown to be activated in pro-

gression of oral leukoplakia, a precancerous lesion of head and neck squamous cell carcinoma
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(HNSCC) [76]. Increased EGFR was shown to promote cellular proliferation, inhibit apop-

tosis and drive development and progression of bronchial dysplasia [77]. Similarly, MYC

overexpression has been previously reported in colorectal polyps with a level of expression

proportional to the polyp size as well as dysplastic histology [78]. Taken together, these

data point to early changes in the development and progression of AAH and that would

thus comprise ideal targets for chemoprevention of LUAD.

Our immune marker profiling overall suggested an activation of pro-tumor immune

pathways (i.e., Th2) and B-cell receptor signaling as well as an inhibition of anti-tumor

immune response (e.g., Th1-derived IFN -γ signaling). Similar findings have been reported

in previous studies of Barretts esophageal tissues, a premalignant condition with a high risk

of progression to esophageal adenocarcinomas [79]. IL12A, known for its proinflammatory

anti-tumor response, along with anti-tumor immune chemokines (e.g. CCL3, CCL4, TLR4 )

and apoptosis-inducing proteases (GZMB) were decreased in AAH relative to normal lung.

On the other hand, we found elevated expression of the CCL2 chemokine receptor CCR2 in

AAH relative to normal lung. CCR2 has been shown to enhance tumor growth, angiogenesis

and tumor progression and was demonstrated to be over-expressed in several tumor tissues

[57]. Recently, CCL2/CCR2 -based immune prevention models were shown to attenuate

tumor development and metastasis [80, 57]. Of note, we identified an increasing expression

in chemokines CXCL13 and CXCL14, both known for their role in inflammatory processes

and immune response [55], and SPP1, previously shown to be overexpressed in premalig-

nant lesions of the oral epithelium as well as actinic keratosis, the premalignant lesion to

skin squamous cell carcinomas [81]. We also found that CD27, which in combination with

its ligand CD70 is known to generate a potent co-stimulatory signal, was increased in AAH

relative to normal lung. Notably, our analysis pointed to significantly increased expres-

sion of the major immune checkpoint CTLA-4 in LUAD relative to AAH [58]. Our brief

analysis of the abundance of tumor-infiltrating immune cells corroborate previous findings

[82], further suggesting the presence and importance of immune activation, early in prema-

lignancy, potentially prior to other mutational processes. Progression of these preinvasive

lesions may be characterized by additional genomic and transcriptomic aberrations, that

may eventually lead to the acquisition of immune tolerance or evasion mechanisms in more
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malignant phenotypes.

Based on our findings on mutual exclusivity of BRAF and KRAS in AAHs along

with the disparate patterns of mutations in the paired LUADs, it is plausible to suggest

that there are divergent pathways in pathogenesis of these preneoplastic lesions. Disparate

and shared gene expression and immune marker deregulation between BRAF - and KRAS -

mutant AAHs further point to differential aberrant immune signaling among AAH based

on driver mutation status. A schematic of this paradigm is represented in Figure 2.17. A

similar divergent model to malignancy has also been recently described in the evolution of

different melanoma subtypes from their precursor lesions [61]. We posit here that aberrant

immune signaling (e.g., attenuated anti-tumor immune response) is a common, perhaps

critical, feature of AAH and LUAD development, as illustrated in Figure 2.17. Given that

our analysis of chromosomal allelic imbalance events came from a smaller subset of cases, I

did not include it in this proposed paradigm. However, a natural extension to this paradigm

would be the preferential enrichment of 17p loss events in ever-smokers and the important

role of cancerized fields in the development of AAH and LUAD, particularly in smokers, as

described by the prevalence of shared DNA mutations and chromosomal allelic imbalance

identified in our cohort of AAH and LUAD.

Figure 2.17: Proposed models for the pathogenesis of AAH. Two potentially diver-
gent modes in the pathogenesis of these preneoplastic lesions are proposed based on the
mutual exclusivity of point mutations and disparate expression profiles.
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2.4.2 Limitations

While we comprehensively studied paired AAHs and LUADs, our cross sectional study de-

sign is not best positioned to thoroughly characterize the progression of AAH to LUAD.

Naturally, the AAHs that already progressed to LUADs are no longer available for analy-

sis. In addition, our cohort consisted of only one AAH specimen for each individual, and

therefore, limits investigations of heterogeneity that might be crucial to identify lesions that

progress to malignancies.

Further, based on our findings on the absence of BRAF mutations in the LUADs

studied in our cohort, one cannot rule out the possibility that the BRAF -mutant AAHs

are benign and may not be the preneoplastic lesions that eventually progress to LUADs.

Earlier studies have insinuated that BRAF mutations are important for initiation of pre-

malignancy rather than their expansion or progression [83, 40]. Lungs of mice genetically

engineered to express a mutant form of Braf (p.V600E) were shown to develop hyperplasias

that progressed to adenoma [84]. Of note, only after mutations in other genes (e.g. Tp53 )

did the Braf mutant lesions progress to LUAD [84]. Yet, the strong pairing of BRAF -

mutant AAHs with EGFR-mutant LUADs is nonetheless an interesting observation that

is worth investigating in future studies comprising a larger number of patients with both

AAHs and LUADs. Further, that these patterns hold across lesions arising independently,

although potentially from the same cell lineage, reflect the patient-specific nature of their

development and highlight the potential for personalized prevention strategies.

It is also worthwhile to mention that our cohort was mainly comprised of East

Asian patients. Earlier studies have demonstrated that LUADs of East Asians exhibit

disparate mutational spectra (e.g. more prevalent activating mutations in EGFR) relative

to LUADs from Western (or Caucasian) patients [85, 57]. It is reasonable to surmise that

mutational differences in AAHs, across patients of different ethnicities, to roughly reflect

those we observe in LUADs. In this context, our results and proposed paradigm could be

more relevant to the East Asian population based on our cohort.

Lastly, recent pathological classification guidelines for LUAD have underscored sub-

groups with pure lepidic growth (adenocarcinoma in situ, AIS) and those that exhibit
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predominant lepidic growth and with less than 5 mm invasion (minimally invasive adeno-

carcinoma, MIA). Earlier work in East Asian LUAD patients suggested that LUADs of the

terminal respiratory unit (TRU) progress from AAH to AIS and then to invasive lesion. It

is plausible that AIS may have distinct profiles that suggest an intermediate stage [61, 40]

in the progression of AAH to LUAD. However, our cohort largely comprised LUADs with

very few AIS or MIA, too limited in size to further delineate profiles along this progression.
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CHAPTER 3

INVESTIGATION OF FIELD CANCERIZATION IN EARLY STAGE

NON-SMALL CELL LUNG CANCERS

Field cancerization in non-small cell lung cancer (NSCLC) was originally coined based on

observations of histological abnormalities in normal tissues adjacent to the tumor. Work

thus far has identified gene expression modifications, chromosomal aberrations and, to a

limited extent, single-gene mutations in tumor-adjacent and distant airway epithelium. We

sought to comprehensively characterize the largely unexplored, somatic mutation landscape

of normal-appearing airway epithelia in early-stage NSCLC patients. Somatic DNA alter-

ations in these normal tissues often exist at low mutant cell fraction and thereby demand

better computational approaches. In this chapter, I describe our approach to identify so-

matic driver mutational processes in airways of early-stage NSCLC patients that might

suggest the presence and importance of field cancerization in NSCLC pathogenesis. I dis-

cuss the bioinformatics tools and methods that I implemented to integrate point mutations

and large chromosomal aberrations as well as to compare mutations in the airway epithelia

to those of the matched NSCLC tumor. I conclude by proposing a list of driver mutations

that might inform of the temporal and spatial events in the initiation and development of

NSCLCs from the airway epithelium. The contents of this chapter is based on the following

publications:

Kadara H*, Sivakumar S*, Jakubek Y, Lucas FAS, Lang W, McDowell TL, Weber

Z, Behrens C, Davies GE, Kalhor N, Moran C, El-Zein R, Mehran R, Swisher SG, Wang J,

Zhang J, Fujimoto J, Fowler J, Heymach JV, Dubinett S, Spira AE, Ehli EA, Wistuba II,

Scheet P. Driver mutations in normal airway epithelium elucidate spatiotemporal resolution

of lung cancer. In press, American Journal of Respiratory and Critical Care Medicine 2019.

Reprinted with permission of the American Thoracic Society. Copyright 2019 American

Thoracic Society. The American Journal of Respiratory and Critical Care Medicine is an

official journal of the American Thoracic Society.
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3.1 Study design

We surveyed mutational processes in the cancerized field of early-stage NSCLC patients

using a combination of deep targeted DNA sequencing of a panel of 409 cancer-associated

genes and high-resolution single nucleotide polymorphism (SNP) array profiling (Figure 3.1).

Multi-region normal airways, comprising tumor-adjacent small airways, tumor-distant large

airways, nasal epithelium and uninvolved normal lung (collectively field), matched NSCLCs

as well as blood cells were interrogated for somatic driver point mutations and genome-

wide chromosomal allelic imbalance events (Figure 3.1). Point mutations and chromosomal

allelic imbalance events were integrated to study patient-specific patterns as well as interro-

gated for specific driver gene-associated multi-hit patterns of pathogenesis and progression

to NSCLCs. I also present computational methods to identify and assess somatic DNA

alterations in these normal tissues that exist at low mutant cell fractions, such as a novel

measure to quantify the extent of field carcinogenesis. I then relate the molecular changes

detected in these normal-appearing tissues to early alterations in the transition to the ma-

lignant phenotype of NSCLC; these may in turn serve as potential targets for early detection

and treatment.

3.2 Methods

3.2.1 Cinical cohort

Multi-region samples comprising tumor-adjacent small airways, tumor-distant ipsilateral

large airways, nasal epithelium, normal lung tissue, peripheral blood cells as well as NSCLC

tumors were obtained from 48 early-stage patients (stages IA-IIIA; 37 LUADs and 11

LUSCs; 42 ever-smokers and six non-smokers) who were evaluated at The University of

Texas MD Anderson Cancer Center. All 48 patients did not receive neoadjuvant therapy

or any therapy for at least a year prior to surgery. Demographic and clinicopathological

data for all cases are summarized in Table 3.1. The study was approved by the Institutional

Review Board and all patients provided written informed consents. A breakdown of samples

obtained from each patient is summarized in Table 3.1.
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Case Histology Gender Vital status Recurrence Stage Tobacco History
AIR 001 LUAD M A Y IIA Never
AIR 002 LUAD F A N IIIA Ever
AIR 003 LUAD M D N IIIA Ever
AIR 004 LUAD M A Y IIB Never
AIR 005 LUAD F D N IIB Ever
AIR 007 LUAD M A Y IIIA Ever
AIR 008 LUAD F D Y IIA Ever
AIR 009 LUAD M A Y IB Ever
AIR 010 LUAD M A N IIA Ever
AIR 011 LUAD M A N IB Ever
AIR 012 LUSC M A Y IIA Ever
AIR 013 LUAD F A N IA Ever
AIR 014 LUAD F A N IA Ever
AIR 015 LUSC F A Y IIB Ever
AIR 016 LUAD M D Y IB Ever
AIR 017 LUSC M D Y IIB Ever
AIR 018 LUSC F A N IB Ever
AIR 019 LUAD M A N IA Ever
AIR 020 LUAD M A N IB Ever
AIR 022 LUSC F A N IA Ever
AIR 023 LUSC M A N IB Ever
AIR 024 LUSC F A N IIA Ever
AIR 026 LUAD F A N IIB Ever
AIR 027 LUAD F D Y IIA Never
AIR 028 LUAD F A Y IA Never
AIR 031 LUSC M D Y IB Ever
AIR 032 LUSC M A N IIB Ever
AIR 033 LUAD F A Y IA Ever
AIR 034 LUAD F D N IB Ever
AIR 035 LUAD M A N IIB Ever
AIR 036 LUAD M A N IA Ever
AIR 037 LUAD F A N IIIA Ever
AIR 039 LUSC F A N IIA Ever
AIR 040 LUAD F A N IB Never
AIR 041 LUAD F A N IA Ever
AIR 042 LUAD M A N IIA Ever
AIR 043 LUAD F A N IA Ever
AIR 044 LUSC F A N IB Ever
AIR 045 LUAD F D N IIB Never
AIR 047 LUAD M D Y IIA Ever
AIR 048 LUAD F A N IB Ever
AIR 049 LUAD F A Y IIA Ever
AIR 050 LUAD F A Y IIIA Ever
AIR 052 LUAD F A N IB Ever
AIR 053 LUAD M A Y IIA Ever
AIR 054 LUAD M D N IIIA Ever
AIR 055 LUAD M A N IB Ever
AIR 056 LUAD F A N IIIA Ever

Table 3.1: Clinicopathological features of patients studied for airway field cancerization.
(Histology - LUAD: Lung adenocarcinoma, LUSC: Lung squamous cell carcinoma; Sex - M:
Male F: Female; Vital status - A: Alive, D: Dead; Recurrence - Y: Yes; N: No)
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Figure 3.1: Study design to understand the field cancerization mechanism in
NSCLCs. A two-pronged approach, consisting of deep targeted DNA sequencing and a
broad-scale SNP genotype array based profiling, was used to study point mutations and
chromosomal aberrations in the normal-appearing cancerized field of early-stage NSCLCs.

3.2.2 Multi-region sample collection

The different types of samples used in this study were collected in the manner we performed

previously [14]. The small airway epithelia adjacent to NSCLCs from the resected speci-

mens. Small normal-appearing airways adjacent to the tumors (S1-S5; S1, relatively closest

from NSCLC and S5, relatively farthest from the tumor) were collected using Cytosoft

brushes from the resected specimens in all 48 patients in a manner previously described

[14]. Briefly, the spatial distance between two consecutive airway brushings was similar

(approximately 2 cm). Airways were denoted by numbers 1 (relatively closest from tumor)

to 5 (relatively farthest). The relative distance of an airway brushing (e.g., airway 1) from

the adjacent NSCLC tumor was similar across all case patients. Brushings of the nasal ep-

ithelium and large airway were collected during endoscopic bronchoscopy prior to resective

surgery. Nasal brushings were acquired using sterile Cytosoft cytology brushes (Medical

Packaging Corporation) and large airway epithelia were obtained endoscopically using Con-

Med disposable bronchial cytology brushes (ConMed Corporation). Brushings from the

nasal epithelium (Na) and from large airways (L; mainstem bronchi) were collected from
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a subset of patients (21 and 24 patients respectively). Lung parenchyma and NSCLC tis-

sues were immediately snap-frozen after resection. Additionally, 169 multi-region NSCLC

biopsies were obtained from 28 patients, ranging from three to eight biopsies per patient

(CNBs 1-8). Histopathological evaluation of brushings was performed in a manner reported

previously [14]. Epithelial content was confirmed by immunohistochemical analysis of pan-

cytokeratin and absence of preneoplastic or neoplastic cells was assessed by hematoylin

eosin staining. Briefly, two touch preparation cytology slides were prepared from brushings

by pressing the samples against glass slides. Cytology slides were then fixed, stained with

Hematoxylin Eosin and analyzed histopathologically using experienced pathologists. Pre-

neoplastic cells, if identified, were excluded because of the minute amount of cells and for

being outside the scope of the present study. The normal appearing tissues including the

tumor-adjacent small and distant large airways, nasal epithelium and uninvolved normal

lung are collectively referred as field for the purpose of further analysis. A breakdown of

samples obtained from each patient is summarized in Table 3.2.

3.2.3 DNA targeted sequencing

DNA was extracted from all fresh-frozen samples using the QIAamp DNA kit from Qiagen

according to manufacturers instructions. DNA was quantified using the RNase P assay (Life

Technologies) according to the manufacturers protocol. Sequencing of a panel of 409 canon-

ical cancer-associated genes was performed in the manner I previously reported in Chapter

2. The Ion AmpliSeq Comprehensive Cancer Panel (CCP; Thermo Fisher Scientific) com-

prising primers for 409 canonical cancer-associated genes and the AmpliSeq Library Kit 2.0

(Thermo Fisher Scientific) was used to prepare barcoded libraries from the DNA samples

(40 ng). Target amplification steps were carried out in 5 µl reactions with 13 cycles of am-

plification. The pools were then combined for digestion and ligation steps. Libraries were

quantitated with qPCR using the Ion Library TaqMan Quantitation Kit. Sequencing was

performed using the Ion Torrent Proton platform. The Ion Torrent Suite was used to assess

overall quality of the libraries, chips, and reagents. Raw DNA sequencing data files have

been deposited in the sequence read archive under Bioproject accession PRJNA453609.
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Case Sample Availability
T CNB S L N Na BL Total

AIR 001 1 0 2 1 1 1 1 7
AIR 002 1 0 2 1 1 1 1 7
AIR 003 1 0 2 1 1 1 1 7
AIR 004 1 0 2 1 1 1 1 7
AIR 005 1 0 2 1 1 1 0 6
AIR 007 1 6 2 1 1 1 1 13
AIR 008 1 8 2 1 1 1 1 15
AIR 009 1 0 2 1 1 1 1 7
AIR 010 1 0 1 1 1 1 1 6
AIR 011 1 0 1 1 1 1 1 6
AIR 012 1 0 2 1 1 1 1 7
AIR 013 1 0 2 1 1 1 1 7
AIR 014 1 0 2 1 1 1 1 7
AIR 015 1 6 2 1 1 1 1 13
AIR 016 1 6 2 1 1 1 1 13
AIR 017 1 6 1 1 1 1 1 12
AIR 018 1 0 2 1 1 1 1 7
AIR 019 1 0 1 1 1 1 1 6
AIR 020 1 0 2 1 1 1 1 7
AIR 022 1 0 2 1 1 1 1 7
AIR 023 1 0 1 1 1 1 1 6
AIR 024 1 8 2 0 1 1 1 14
AIR 026 1 8 2 0 1 1 0 13
AIR 027 1 8 2 0 1 1 1 14
AIR 028 1 7 2 0 1 0 1 12
AIR 031 1 6 2 0 1 0 1 11
AIR 032 1 6 2 0 1 0 1 11
AIR 033 1 4 2 0 1 0 0 8
AIR 034 1 8 5 0 1 0 0 15
AIR 035 1 0 5 0 1 0 1 8
AIR 036 1 8 5 0 1 0 1 16
AIR 037 1 8 5 0 1 0 1 16
AIR 039 1 8 5 0 1 0 0 15
AIR 040 1 8 5 0 1 0 1 16
AIR 041 1 0 4 0 1 0 1 7
AIR 042 1 8 5 0 1 0 1 16
AIR 043 1 0 5 0 1 0 1 8
AIR 044 1 0 4 0 1 0 0 6
AIR 045 1 8 5 0 1 0 1 16
AIR 047 1 4 4 0 1 0 1 11
AIR 048 1 4 5 0 1 0 1 12
AIR 049 1 3 5 0 1 0 1 11
AIR 050 1 4 5 0 1 0 1 12
AIR 052 1 3 5 0 1 0 1 11
AIR 053 0 4 5 0 0 0 1 10
AIR 054 1 4 5 0 1 0 1 12
AIR 055 1 4 5 0 1 0 1 12
AIR 056 1 4 5 0 1 0 1 12

498

Table 3.2: Samples analyzed for DNA-based profiling. Tissues are labeled as T: Tumor,
CNB: Core-needle biopsy, S: Tumor-adjacent small airways, L: Tumor-distant large airway,
Na: Nasal epithelium, N: Normal uninvolved lung, and BL: Blood
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3.2.4 Strategy to identify somatic point mutations

In a manner described in Section 2.2.6, I used a multiple mutation callers to identify somatic

SNVs in all samples profiled in this cohort. When available, white blood cells were used as

germline control (n = 42); for the remaining cases, their matched normal lung tissues were

used as control (n = 6).

3.2.4.1 Within-patient sample quality control

Given the large size of our study cohort, prior to running all the mutation callers, I wanted

to inspect the association of samples from the same individual based on sample labels by

performing a quantitative assessment of within-patient and between-patient samples. One

approach to do this verification is to test for the concordance of genotypes at germline

variant sites. Our expectation would be to observe higher concordance between samples

from the same individual than those from different individuals. I used the vcf-compare

feature in vcftools to perform this genotype-level correlation between the marginal VCF files

generated by Torrent variant caller. To make it more accurate, variants can be restricted to

those observed in the 1000 genomes project. The reported non-reference discordance rates

(NDR) were then used as measure to infer sample relationships. A low NDR is expected

between samples from the same individual, while samples from different individuals show

high NDR values.

3.2.4.2 Multiple mutation callers

Somatic mutations were rigorously identified based on four different methods: the Ion

Torrent proprietary software Ion Reporter, marginal variant files (VCFs) generated from

Torrent Variant Caller (TVC), MuTect and Varscan2. The stringency of mutation calling

was increased to only include mutations that were identified by at least two different callers

in at least one sample for every patient. This approach was implemented to account for

lower variant allele frequency (VAF) mutations, particularly in the airway field, that might

not be identified by all mutation callers. Somatic SNVs in exonic, splicing and untranslated

regions (UTRs) within the targeted 409 cancer gene panel were assessed. Nonsynonymous
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mutations in bona fide NSCLC and cancer driver genes [5, 6, 42] were also studied a priori

in both the NSCLCs tumors and biopsies (T, CNB1-8, respectively) and the field (S1-5, L,

Na, N) samples.

3.2.4.3 Inference of mutation signatures

Although, traditionally, larger sequencing platforms such as whole-genome sequencing and

whole-exome sequencing derived mutations are used to study mutation signatures, I in-

spected the mutations identified from known mutation signatures, under the assumption of

high mutation burden in NSCLCs. Therefore, SNVs detected in the NSCLC and field sam-

ples were assessed for patterns in base substitutions and potential mutational signatures

using the R package deconstructSigs [86]. First, the NSCLC samples were dichotomized

based on their smoking status and then analyzed for specific mutation substitution pat-

terns and signatures (e.g., smoking-associated C>A signature). Using signatures detected

in NSCLCs of smokers, the matched normal field samples were also assessed for enrichment

of these specific signatures. Normal airway samples from non-smokers were not tested for

mutational signatures due to the limited number of non-smokers samples and their relatively

low mutation burden.

3.2.5 Identification of subtle genome-wide allelic imbalance

AI profiles for 39 of the 48 NSCLC cases in this cohort were previously assessed and reported

by our group [13]. AI profiles in the additional nine patients were analyzed using hapLOH

[48] and chromosomal aberrations were characterized in a manner previously reported [13]

and as described in Section 2.2.9.

3.2.6 Quantitative analysis of the cancerized field in the normal-appearing

airway.

The SNVs as well as the large chromosomal aberrations were used to perform quantitative

tests to better study the extent of shared events between the tumor and other tissues

within each patient as well as across all patients. In this section, I describe the approaches
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implemented to infer the spatial and temporal ordering of events in the normal-appearing

airway epithelium and in its transition to NSCLCs.

3.2.6.1 Statistical testing of spatial airway field of cancerization

In each patient, the presence of a spatial gradient of variant allele frequencies (VAFs) was

tested. For every individual, at each mutated locus in the NSCLC, samtools was used to

obtain a VAF for the matched airway field tissues from allelic depths at those loci. This was

performed solely to increase the data points of mutations for comparison and to account

for variants that might not be identified by any mutational caller, but show subtle signal of

presence in their raw allelic depths. This set of mutation VAFs was termed forced VAFs.

Then, for each patient, linear regression was performed using the forced VAFs for the

airway field samples against numeric constants assigned to each airway field sample based

on the proximity to NSCLC in the order (S(1-5), L, N, Na as 1.1,1.2,1.3,1.4,1.5,8,11 and

14 respectively). The distances were assigned based on a close approximation of physical

distance. Other arbitrarily assigned distances were also tested. The total read depths at

the mutated loci were used as weights in the linear regression model. The regression slope

was then calculated, with a negative slope indicating a spatial field effect i.e. tissues closer

to the tumor (e.g., S1) exhibit higher VAFs than those farther away from the tumor (e.g.,

Na). Tumors were excluded from this slope estimation, since it is expected that tumors

will always force a negative slope by virtue of being more aberrant. The mean slope across

all 48 patients was calculated. This mean was then tested for statistical significance using

permutation analysis, consisting of 1000 iterations, by altering the field tissue order in each

iteration. Due to the lack of a natural null distribution for our test statistic, a conservative

randomization approach robust to model misspecification was used. Each iteration involved

altering the tissue order/distance (e.g., iteration 1: S3, S2, N, Na, L, S4, S1, S5, iteration

2: L, S3, S1, N, Na, S4, S3, S5) and re-estimating the mean slope across all 48 patients.

Z-scores and P values were then computed from these iterated values against the previously

obtained mean slope from field effect derived tissue orders.
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3.2.6.2 Quantification of airway field of cancerization

We then wanted to better quantify the extent of field of cancerization effect in our cohort.

To do this, I developed a measure based on the proportion of shared events between matched

NSCLCs and field specimens. For each individual, SNVs and AI events identified in the

NSCLCs were examined in the matched field samples. A similarity measure was then

computed between tumors and each matched airway field sample based on the extent of

shared somatic events, derived from the presence (or absence) of events. Airway field

samples were sorted based on their similarity measure from the corresponding NSCLC

and were assigned equidistant numeric values, with all measures scaled from 0 to 1 (0,

corresponding to NSCLC; and 1, corresponding to the farthest field tissue). For each patient,

the ordered field tissues and their proportion of sharing with matched NSCLCs were used to

compute a field cancerization area under the curve (FCAUC) using the DescTools package

in R, ranging from 0 if there is no evidence of field cancerization to 1 if field tissues shared

all their mutations with the matched NSCLC.

Figure 3.2: Pictorial representation of the calculation of field cancerization area
under the curve (FCAUC). Genomic airway field cancerization was quantified based
on shared SNV and AI profiles and summarized as FCAUC (between 0: lack of airway
cancerization evidence and no sharing of alterations in the airway field with the tumor
(black line) and 1: complete sharing of alterations between all airway field samples and
matched NSCLCs (red)). Shown here are three representative cases with relatively varied
FCAUCs (orange). The x-axis denotes an ordinal distance of airway field tissues from its
matched NSCLC (0 to 1), and y-axis denotes the proportion of shared aberrations with the
matched NSCLC (0 indicates no shared events, to 1 for complete sharing). The FCAUC
is computed between the dashed lines by excluding the primary tumor specimen from the
calculation
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Figure 3.2 shows a pictorial representation of the computation of the FCAUC mea-

sure. Suppose that an individual had one tumor sample (T) and five field samples (F1-F5).

The x-axis shows the ordinal scale of all the tissues available for an individual, ordered

based on the extent of sharing with the primary NSCLC. The y-axis shows the proportion

of shared events with the NSCLC. The profile for the NSCLCs of each individual are de-

rived from both the tumor sections as well as core needle biopsy specimens, where available.

FCAUC is computed between the dashed lines shown in Figure 3.2, i.e., using only the field

tissues (F1-F5). When there is no detectable field of cancerization, the field tissues exhibit

no shared events with the primary NSCLC and therefore will appear like the black line plot

in Figure 3.2, which will result in a FCAUC of zero. In contrast, although rare, if the field

tissues showed all the mutations observed in the matched NSCLCs, the FCAUC value will

be one. In other individuals, we might observe different proportions of shared events in the

field tissues, probably based on the proximity to the tumor, that might result in orange

line plots shown in Figure 3.2. These cases will show a FCAUC between zero and one.

Our primary interest was identifying these patients with non-zero FCAUC, as potential

exhibitors of field effects. Of these, cases with a visually pronounced FCAUC were further

interrogated for specific mutation patterns.

3.2.6.3 Phylogenetic analysis of the cancerization field

Phylogenetic trees were then constructed from the identified somatic SNVs and AI events

across all samples for each individual to study the specific shared and disparate mutation

events between matched NSCLCs and field tissues. Distance matrices were generated using

dist.gene from the ape package in R. The difference in this section compared to the previous

section of FCAUC computation is that mutations private to the field tissues were also

used in this analysis to generate the distance measures. For each individual, the distance

matrix derived from all tissues profiled for that individual was then used to construct

unrooted neighbor joining trees. While the two sources of somatic alterations were merged

for the combined analysis, I also constructed individual level trees for SNVs and AI events

independently and then tested the concordance of the two tree topologies (SNV tree and

AI tree) for each patient. The patients exhibiting an evidence for field cancerization were
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then identified based on their distinct topologies from those lacking evidence for field effects

(straight line).

3.3 Comprehensive genomic characterization of the cancerized field of early-

stage NSCLCs

In this section, I present the results from our comprehensive characterization of point muta-

tions and large chromosomal aberrations in the normal-appearing cancerized field of early-

stage NSCLC patients.

3.3.1 Sample quality control and testing

Targeted DNA sequencing resulted in an average depth of 1278.4X across all samples profiled

in this study. The study originally consisted of 500 samples, however based on the method-

ology described in Section 3.2.4.1, I tested for individual-level sample genotype matching

and identified two problematic samples. Figure 3.3 shows the distribution of NDR values

for samples that were labeled to be from the same individual versus those labeled to be from

different individuals. Overall, within-patient NDR values were much lower then between-

patient NDR values. However, a few points stool out as outliers in this boxplot for each

category of samples.

A closer inspection identified that the tumor and uninvolved normal lung tissue of

one individual (AIR 053) failed the test. The tumor and normal tissue for this individual

were in fact concordant with those derived from patient AIR 052, suggesting a possible

technical error while sequencing. Figure 3.4 shows a heatmap generated from correlation

values computed using the presence (or absence) of a subset of variants, derived from

the 1000 genomes project, in the samples from individuals AIR 052 and AIR 053. The

tumor section and uninvolved normal lung parenchyma from individual AIR 053 clustered

with samples from patient AIR 052. However, since this individual had profiles from core-

needle biopsies to serve as a tumor comparator and blood to serve as a germline control,

the individual was still included in the study after removing the two problematic samples

(AIR 053 T and N).
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Figure 3.3: Pairwise comparisons to test for individual-level concordance of sam-
ples. NDR values were computed for paired samples when the two samples were labeled to
be from the same individual versus those labeled to be from different individuals. Boxplots
with overlaid points of each NDR value computed are shown.
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Figure 3.4: Heatmap of correlation between samples from individuals AIR 052
and AIR 053. A correlation based heatmap depicts the relationship between samples
from individuals AIR 052 and AIR 053 in this study cohort.
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This highlights the importance of sanity checking the cohort, especially when profil-

ing large number of samples within an individual, to identify and exclude possibly problem-

atic and error prone samples such as from contamination, sample swap and other technical

errors. To enhance our focus on normal-appearing samples, we pooled the T and CNB

samples collectively as a NSCLC set and S, L, N and Na (airway) samples were denoted as

the cancerized field.

3.3.2 Somatic point mutation processes in the uninvolved normal-appearing

field

3.3.2.1 Mutation burden

I identified 3,286 somatic mutations in 285 samples, mostly in NSCLCs (T or CNB; 3,017

mutations in 209 samples from 48 patients). I identified 269 somatic mutations in 76 airway

field samples from 36 patients, the vast majority of which were observed in airways adjacent

to the tumor (226 out of 269 field mutations). The overall airway field mutation burden

decreased as distance from tumors increased (S: 226; L: 19; N: 16; Na: 8 mutations), a

classical field phenotype (Figure 3.5).

Figure 3.5: Mutation burden in multi-region samples of normal-appearing airway
epithelia and matched NSCLCs. The total number of somatic SNVs across the airway
field comprising multi-region samples from tumor-adjacent small airways (S), distant large
airways (L), nasal epithelium (Na) and uninvolved normal lung tissue (N) as well as their
matched NSCLCs (T) are depicted. Each point represents a single sample and plots within
each sample type show somatic SNV burden distributions.
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The mean somatic mutational burden was significantly higher in NSCLCs (13.9

mutations per sample) compared to the airway field (1.2 mutations per sample) (Figure

3.6). Although mutation burdens in lifetime smoker NSCLCs were significantly higher than

in non-smokers (P <10-15), we observed marginal evidence for this pattern in the airway

field (Figure 3.6).

Further interrogation of 27 cases with both multi-region CNBs and tumor sections

identified 266 mutations unique to CNBs that were missed in whole tumor sections. Of

these, 70 mutations from five cases were shared with the airway field. This attests to the

importance of profiling multiple tumor samples to better capture heterogeneity and detect

low frequency subclonal events.

Figure 3.6: Mutation burden differences between normal airway epithelia and
NSCLCs based on tobacco history. Somatic point mutations were identified in the air-
way field and matched NSCLCs (including multi-region tumor biopsies) from deep targeted
DNA sequencing. Mutation burdens were plotted for each sample type (airway field and
NSCLC) separately for non-smokers and smokers.

3.3.2.2 Mutation signatures in airway field of cancerization

The mutations identified in NSCLCs were then used to estimate mutation signatures. De-

spite the lower overall number of mutations captured in targeted panel sequencing, in com-

parison to whole genome and whole exome sequencing, I used the more aberrant NSCLC

specimens to identify mutation signatures. For example, smoker NSCLCs exhibited more

tobacco-associated [signature 4] C >A base substitutions compared to non-smoker tumors

(Figure 3.7). Enrichment of this signature was also observed in smoker airway field sam-
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ples albeit to a lesser extent (Figure 3.7), while using the NSCLC derived signatures as

a background. Figure 3.7 shows the enrichment of signatures in NSCLCs (smokers and

non-smokers) as well as field tissues of non-smokers.

Figure 3.7: Spectrum of base substitutions and mutational signatures in the
normal-appearing airway field of smoker NSCLC patients. Mutation substitution
patterns in airway field and NSCLC were annotated and plotted based on tobacco history.
Airway field of non-smokers was excluded due to low sample availability and lower muta-
tion counts. The airway field samples from smokers were tested for enrichment of specific
canonical mutational signatures using those identified in smoker NSCLCs as background.

3.3.2.3 Mutation frequencies and spatial field effects

I then tested for the presence of a spatial gradient in mutation VAFs based on the proximity

of the field tissues to the tumor. Overall, VAFs of mutations in field samples decreased as

distances from matched NSCLCs increased, as shown in Figure 3.8.

While Figure 3.8 shows the VAFs for all mutations observed within each tissue

profiled and across all patients, it doesn’t account for spatial distribution in VAFs of the
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Figure 3.8: Variant allele frequency distribution in airway field and NSCLCs. Box
plots demonstrating the VAF distributions of the identified SNVs across the multi-region
samples: tumor-adjacent small airways (S), distant large airways (L), nasal epithelium (Na)
and uninvolved normal lung tissue (N) as well as their matched NSCLCs (T) are shown.

same mutation in all tissues of the individual. To test this, I performed a statistical analysis

of the airway field VAFs. Mutations in the tumor were tested for presence and variant allele

frequency in each of the field tissues, using raw allelic depth intensities. Using the approach

explained in Section 3.2.6.1 of this chapter, I obtained a net negative mean slope across

all patients (-0.003). Figure 3.9 shows the weighted regression based slope for all 48 cases

profiled in this study. These mutations were then used to perform a permutation analysis,

comprising 1000 iterations of differentially ordered tissues, to test the significance of this

negative slope. The result indicated that this mean negative slope was also statistically

significant (P = 0.03; Figure 3.10) suggesting the presence of an overall spatial field effect,

with clonal mosaicism enriched in tissues closer to NSCLC.

3.3.2.4 Driver mutation landscape of the cancerized field

I found 28 mutated bona fide drivers [5, 6, 42], among other genes, displaying protein

damaging mutations in the airway field samples (Figure 3.11; Table 3.3). TP53, KRAS,

KEAP1, KMT2D, KMT2C, STK11, ATRX, IDH1 and JAK1 were mutated in normal-

appearing airway samples from more than one case with KMT2C and TP53 being most
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Figure 3.9: Spatial analysis of variant allele frequencies in the normal airway field
with respect to proximity to NSCLC. Within patient variant allele frequencies (VAFs)
were obtained for airway field tissues at sites that exhibited mutations in the matched
NSCLCs. A weighted linear regression slope between the VAFs and ordered airway distances
(based on their relative proximity to the NSCLC) was computed. A barplot of the derived
slopes for all 48 cases is shown.

Figure 3.10: Statistical testing of the spatial field effect using variant allele fre-
quencies in the normal airway field with respect to proximity to NSCLC. Permu-
tation testing was performed to test the significance of the mean negative slope (blue line)
obtained across all patients. A histogram of all permutation-inferred slope values along
with the mean slope (blue line) are plotted.
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recurrently mutated in the airway field (n = three cases; Figure 3.11). The majority (19

out of 28) of these genes exhibited the same mutation in matched NSCLCs, some of which

were shared within multiple field samples for the patient (Figure 3.11; Table 3.3). NSCLC-

adjacent small airways (21 samples from 13 cases) exhibited mutations in 22 driver genes.

The majority (17 out of 22) of these genes were also mutated in the matched NSCLCs

(Table 3.3). Relatively more distant large airways (n = 2) showed mutations in five genes

- CDKN2A, PIK3CA, SETD2, TP53, TSHR; all were also mutated in matched NSCLCs

(Table 3.3). Uninvolved normal lung tissue (n = 4) and nasal epithelium (n = 4) showed

mutations in RB1, RET, TSHR; and ATK1 respectively, none of which were shared with

matched NSCLCs (Table 3.3). Airway field samples comprised mutations consistent with

previously characterized variants specific to LUADs (KRAS, STK11 and KEAP1 ) and

LUSCs (CDKN2A, PIK3CA and KMT2D) or to both (TP53 ) (Figure 3.11).

Tissue Cancer associated mutated genes

Small airway

AMER1, ARID2, ATM, ATRX, CDC73,
CDKN2A, CTNNB1, CYLD, DNMT3A,
HRAS, IDH1, JAK1, JAK2, JAK3,
KEAP1, KIT, KMT2C, KMT2D, KRAS,
NOTCH1, STK11, TP53

Large airway
CDKN2A, PIK3CA, SETD2, TP53,
TSHR

Normal lung RB1, RET, TSHR

Nasal epithelium AKT1

Table 3.3: Cancer driver genes exhibiting mutations in different airway field tissues. Genes
shown in red exhibited mutations that were shared with their matched NSCLC

Figure 3.12 shows cases exhibiting shared driver genes mutations [5, 6, 42] in

matched airway field and NSCLC specimens. For genes mutated in both NSCLCs and

airway field samples, the observed VAFs in the tumors were often higher than in field sam-

ples (Figure 3.12) - suggestive of selection-driven clonal expansion of the airway field. As an

exception, case AIR 054 however showed a higher VAF in its field tissues compared to the

matched NSCLCs. Cases AIR 039 and AIR 043 showed similar VAFs of driver mutations

in matched airway field and NSCLCs.
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Figure 3.11: Landscape of somatic driver mutations in the NSCLC-adjacent and
-distant normal airway epithelium. Somatic nonsynonymous (e.g., missense, nonsense
and stoploss) variants in all airway field and matched NSCLCs were identified from targeted
sequencing of a panel of 409 genes. Mutated genes previously implicated as drivers in
NSCLC or other malignancies are shown for the airway field and tumor samples. Columns
denote genes and rows represent individual patients. Each patient, denoted by a row, has
the airway field presented on top half of the cell and the matched NSCLC in the bottom
half. Mutated genes are color coded based on the proportion of airway samples carrying a
variant within the gene (proportion range 0 to 1; white to black; right panel) and presence
in the matched NSCLC (white: absent, black: present; right panel). The number of patients
with the indicated driver mutated genes in the airway field and NSCLC are shown as bar
plots (top panels). Annotations for stage, histology, smoking and tissue type (airway and
NSCLCs) for all patients are also shown. Patients were ordered, top to bottom, based on
airway field and NSCLC somatic mutation burdens (middle horizontal barplots).
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Figure 3.12: Variant allele frequencies of shared driver mutations in NSCLCs
relative to their normal airway cancerization field. Allele frequencies of somatic
variants identified to be shared between the airway field and NSCLC within patient were
plotted. Each dot represents a mutation in a given sample within a patient. The size of
the dot represents the total sequencing depth available at the locus and the color of the dot
corresponds to the type of sample (normal airway field, red; NSCLC, purple).
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3.3.3 Integrative mutational mechanisms in airway field carcinogenesis

I next identified and integrated previous findings of chromosomal mutations (events) leading

to AI [13], to infer regions of allelic imbalance (AI) at a whole-genome scale, and integrated

those with the identified somatic SNVs. NSCLCs exhibited a relatively high abundance of

somatic SNVs and AI with an overall concordance in burden of these mutation types (rho

= 0.43; P <10-10, Spearman rank test; Figure 3.13, right). Matched airway field samples

also exhibited a positive relationship between AI and SNVs, albeit to a lesser extent (rho

= 0.22; P <10-3; Figure 3.13, left).

Figure 3.13: Association of SNV and allelic imbalance somatic mutation burdens
in the normal-appearing airway field and matched NSCLC. The correlation be-
tween somatic SNV and AI burdens (percentage of aberrant genome) was tested in the
normal-appearing airway field and NSCLC. A scatter plot of the two types of somatic mu-
tation burdens as well as their correlation is shown for the normal airway field (left) and
NSCLC (right). Each point represents an airway field or NSCLC sample profiled. Correla-
tions between SNV and AI burdens were statistically evaluated using the Spearman rank
test.

3.3.3.1 Field of cancerization area under the curve (FCAUC)

I then attempted to construct a genomic airway field phenotype using the field of cancer-

ization area under the curve (FCAUC) measure. In Figure 3.14, I show the plots for three
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cases that exhibit varying degrees of sharing with the matched primary, thereby resulting in

different FCAUC values. When applied to the entire cohort of 48 individuals, I identified 25

Figure 3.14: Genomic field of cancerization quantification for three representative
cases. The ordinal field tissue distances and proportion of shared events in each field tissue
with its matched NSCLC is shown for three representative cases. Similarly, FCAUC values
were computed for all cases in the cohort.

cases that exhibited a non-zero FCAUC, indicating evidence for shared somatic aberrations

between normal-appearing airway samples and matched NSCLCs. FCAUC values for all 48

cases is shown as a barplot in Figure 3.15. Specifically, a few individuals with high FCAUC

values were identified; these are suggestive of higher degrees of field cancerization effects.

Figure 3.15: Distribution of FCAUCs across all patients profiled. A barplot with
the FCAUC values for each individual is shown. Cases are ordered by their FCAUC value.
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3.3.3.2 Phylogenetic assessment of field carcinogenesis

I performed phylogenetic analysis to further interrogate relationships between the field sam-

ples and matched NSCLCs within each individual. The combined mutation profile, con-

sisting of both SNVs and large chromosomal arm allelic imbalance events was used. I also

generated trees separately for SNVs and AIs detected in each patient. The tree topologies

for cases with evidence for genomic field cancerization differ from a typically straight line

that would be expected if only NSCLCs presented mutations. For a majority of patients

(30/48), I observed a concordance of tree topologies between their separately-constructed

SNV and AI profiles. Among the 48 patients, six patients (four LUADs and two LUSCs)

exhibited phylogenetic tree structures with relatively pronounced airway field carcinogenesis

phenotypes (Figure 3.16) – the same patients statistically determined above to markedly

display field effects (Figure 3.15). These phylogenetic trees represent a serial inclusion of

mutations, especially within airway epithelia, that might imply a temporal order of events in

airway field cancerization and NSCLC pathogenesis. For example, cases AIR 039, AIR 016

and AIR 026 exhibited multiple airway specimens with differential mutation loads. Case

AIR 039 likely presented an early TP53 mutation (S3) that was sequentially followed by

additional hits comprising a KMT2D mutation, and chromosomal aberrations such as 3p

loss and 17p loss in the relatively closer airway epithelium (S2) that eventually acquired

additional mutations to progress to NSCLCs (e.g., 12p gain). Similarly, AIR 026 exhibited

an early mutation in KEAP1, with subsequent STK11 and TP53 point mutations and 9q

loss; the matched NSCLC exhibited additional events including SMARCA4 mutation, 17p

loss and a subtle 12p AI event. These trees also encompass driver genes with two-hit alter-

ations; such as a driver with a shared mutation in both the airway field and NSCLC (e.g.,

TP53 in AIR 026) but with an additional NSCLC-specific hit (e.g., 17p loss in AIR 026),

therefore alluding to the two-hit model of progression of normal airway epithelia to NSCLC

development, described in more detail in the next section. Overall, this analysis highlighted

potential sequential patterns of mutations and key drivers in the progression of airway field

to NSCLC. The phylogentic trees for all the cases, as well as trees generated separately for

SNVs and AIs for each patient are provided in the Appendix.
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Figure 3.16: Molecular spatial and temporal relationships between the normal
airway cancerization field and early-stage NSCLC. For every patient, the SNVs and
AIs detected (n) across airway field and NSCLC tissues were integrated to generate un-
rooted neighbor-joining phylogenetic trees to study intra-patient multi-region samples. Six
cases (two LUSC and four LUAD) with pronounced field effects are shown. The phylo-
genetic trees were annotated with mutations in known cancer associated genes as well as
large chromosomal aberrations previously implicated in NSCLC pathogenesis. Each tree is
accompanied by a scale to denote the number of mutations. The relative somatic burden for
each tissue in a tree is denoted by a correspondingly sized red circle. The distances between
the multiple points of a tree correspond to the extent of shared as well as as disparate
mutational events among samples of a patient.
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3.3.3.3 Somatic multi-hit oncophenotypic alterations in the cancerized field

In addition to looking at the presence (or absence) of SNVs and AI events in matched

field and NSCLC tissues within an individual, I also probed for somatic two-hit alterations

(genes with both SNVs and within AI events). Figure 3.17 shows the mutation patterns

at known cancer driver genes [42], including NSCLC driver genes [5, 6]. Genes with two-

hit aberrations are depicted in red and genes comprising either single SNVs or AI events

are depicted in orange and yellow, respectively. Airway field of four cases exhibited two

hits in known NSCLC drivers such as TP53 /17p focal or whole-arm loss, KRAS/12p focal

gain, KEAP1 /19p arm loss, STK11 /19p arm loss, CDKN2A/9p arm loss and SETD2 /3p

arm loss and that were also shared with matched NSCLCs (Figure 3.17). These hits are

summarized in Table 3.4.

Sample Two-hit genes

AIR 018-L CDKN2A, SETD2, TSHR
AIR 026-S1 DNMT3A, KEAP1, STK11, TP53
AIR 039-S2 CTNNB1, CYLD, JAK3, TP53
AIR 054-S2 KEAP1, KRAS, STK11
AIR 055-S2 JAK1
AIR 055-S3 JAK1

Table 3.4: Airway field samples exhibiting somatic two-hit mutations in known cancer
associated genes.

I expanded the analysis to include other known cancer-associated genes [42] and

identified additional two-hit genes in the airway field such as CYLD/16q loss and DNMT3A/2p

gain (Table 3.4, Figure 3.17). I also noted 12 cases whose airway field samples exhibited

single hits (AI or SNV) for driver genes, and where the matched NSCLCs exhibited two-

hits for the same genes resulting in first shared hit/second tumor hit pairs (Table 3.5).

These included CDKN2A/9p cnLOH, PIK3CA/3q gain, TP53 /17p cnLOH, KRAS/12p

focal gain and IDH1 /2q gain where the first (shared) hit is a SNV with a presumably sub-

sequent AI event observed in matched NSCLCs; and pairs such as 9q cnLOH/NOTCH1,

9q cnLOH/PTCH1, 9q cnLOH/ABL1, 16q loss/CDH1 and 2p gain/MSH2, where the first

(shared) hit is an AI event with a presumably subsequent SNV in matched NSCLCs (Fig-
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Figure 3.17: Somatic two-hit aberrations in the adjacent and distant normal air-
way epithelium of early-stage NSCLC patients. Data from deep DNA sequencing
and SNP array profiling were integrated to identify NSCLC-associated drivers that com-
prised either somatic SNVs or AI as well as genes with two-hit aberrations (both SNVs
and AI) in the airway field and NSCLC samples. Columns and rows represent patients and
NSCLC-associated driver genes, respectively. Each column denotes a patient with the left
half of the cell corresponding to the airway field (grey) and right half (black) to its matched
NSCLC. NSCLC-associated driver genes are ordered top to bottom based on overall two-hit
and single-hit patterns in the airway field and NSCLC; the cases (columns) are ordered left
to right based on overall burden of somatic hits across these genes. The detected AI events
were annotated as gain (brown), loss (blue), cnLOH (green) and undeterminable (grey).
Events exhibiting intra-tumor heterogeneity within multi-region tumor samples (e.g., one
CNB with a cnLOH and another biopsy from the same tumor showing a copy gain for the
same chromosomal region: cnLOH,gain) are annotated separately.
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ure 3.17, Table 3.5). I identified other examples exhibiting this pattern involving subtle

(i.e, from a low fraction of cells exhibiting the alteration) AI events in the genome that

spanned mutated genes such as ARID2, ATM, CDKN2A, IDH1, KIT, KMT2D, KMT2C,

JAK2 and NOTCH2 (Table 3.5). Therefore, these somatic AIs and SNVs can offer insights

into NSCLC pathogenesis by suggesting temporal ordering of events in the development of

NSCLCs from a cancerized field.

Sample Shared first hit Second NSCLC hit

AIR 012-L PIK3CA 3q gain
AIR 012-L TP53 17p cnLOH
AIR 016-S1 ARID2 12q undeterminable
AIR 016-S1 ATM 11q undeterminable
AIR 016-S1 IDH1 2q undeterminable
AIR 016-S1 JAK2 9p undeterminable
AIR 016-S1 KIT 4q undeterminable
AIR 016-S1 KMT2C 7q undeterminable
AIR 017-S4 1p undeterminable (focal) NOTCH2
AIR 024-S1 9q cnLOH NOTCH1
AIR 026-S1 2p gain MSH2
AIR 031-S2 CDKN2A 9p cnLOH
AIR 033-S1 9q cnLOH ABL1
AIR 033-S2 9q cnLOH ABL1
AIR 039-S2 KMT2D 12q undeterminable
AIR 040-S2 IDH1 2q gain
AIR 041-S1 KRAS 12p gain (focal)
AIR 042-S2 9p undeterminable CDKN2A
AIR 054-S2 9q cnLOH PTCH1
AIR 054-S2 16q loss CDH1

Table 3.5: Airway field samples with shared first somatic hit and matched NSCLC-specific
second somatic hit.

3.4 Discussion

Previously, somatic mutations in the EGFR oncogene have been identified in normal ep-

ithelium of EGFR-mutant LUADs [19] and KRAS mutations have been detected in lung

tissue adjacent to resected tumors [17]. Yet, the spectrum of somatic driver mutations and

genes in the normal-appearing airway cancerization field is not known. In this chapter, I

presented the most comprehensive analysis of genomic aberrations in normal-appearing air-
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way epithelium to this date. Our study consisted of a rich cohort of 498 samples comprising

multi-region and spatially distributed airway and NSCLC specimens, along with germline

samples, from 48 patients to identify the landscape of somatic point mutations and allelic

imbalance (AI) in the normal-appearing airway. The adjacent and distant-to-tumor un-

involved normal-appearing airway field comprised somatic mutations in key drivers that

were present at higher allele frequencies in the matched NSCLCs. We also identified key

driver genes with shared two-hit alterations (both SNVs and AI) in the airway field as well

as those with single hits in the field coupled with NSCLC-specific mutations. Findings

from our study offer insights into a continuum of alterations with plausible spatiotemporal

properties in the normal-appearing airway epithelium and nearby NSCLC.

3.4.1 Significance of findings

Here, I found that genomic airway field cancerization phenotypes were identified in over

50% of the cases suggesting that airway field carcinogenesis is not uncommon in early-stage

NSCLC. Given our focus on somatic genomic changes, I contrasted genomic profiles in

airways and tumors to peripheral blood cells or distant normal lung parenchyma in each

patient, thus enabling us to focus on likely pathogenic changes in the lungs of NSCLC pa-

tients. Additionally, we not only pinpointed driver alterations (e.g. KRAS and PIK3CA

mutations) in the normal airway epithelium (both adjacent and distant) but also demon-

strated that these changes were shared with the NSCLC with many occurring sequentially

– lending further confidence to the probable role of these genomic changes in pathogene-

sis of this malignancy from the epithelial cancerization field. These changes may hint at

mechanisms that underlie tumor recurrence or development of second primary tumors in

the remaining lung following surgical treatment with curative intent.

In this study, I present complementary findings on genomic airway cancerization

that allude to potential clonally selected changes in the transition of normal airway field

to NSCLC: overall increased somatic VAFs in NSCLCs relative to the airway field; shared

mutated driver genes between the airway field and NSCLCs; acquisition of additional driver

events in the NSCLCs themselves along with overall increased driver gene VAF in the

tumors. We surmise that these genomic airway field cancerization changes provide insights
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into spatial and temporal development of NSCLCs. If so, studies that include longitudinally

profiled airway field samples from lung cancer patients and/or smokers who are free of lung

cancer would bear this out. Mutations in key drivers that we find here to be shared between

the airway field and NSCLC were previously described as truncal mutations in intra-tumor

heterogeneity (ITH) studies of NSCLC [70, 87]. It is noteworthy that our present analysis

of multi-region NSCLC biopsies allowed us to capture more truncal tumoral mutations that

are shared with the field.

It is noteworthy that several driver genes I found to be mutated in the airway field

have been previously implicated in lung preneoplasia. For instance, our previous study and

that of Izumchenko and colleagues identified mutations in TP53 and KRAS in atypical

adenomatous hyperplasia (AAH), the precursor lesion to LUAD [40, 44]. Specific to my

survey of AAHs (Chapter 2), I found that KEAP1 and KMT2D that were previously

identified to be mutated in AAHs, were also mutated in the airway field and matched

NSCLCs in this cohort, indicating that, under certain selective pressures, the cancerized

field may evolve to preneoplastic and ultimately to malignant lesions [10, 88].

In conclusion, our analysis of a rich set of spatially distributed multi-region normal

airway epithelia and early-stage NSCLCs illuminated somatic variants of key driver mutated

genes in the airway field that were mostly shared with matched NSCLCs. Overall, these

somatic variants were positively selected in the tumors suggestive of clonal expansion in

NSCLC. Our study not only points to early mutational processes that likely demarcate key

events in the emergence of NSCLC from the normal-appearing cancerization field but can

also pave the way for similar interrogations in other malignancies. These airway field changes

may comprise potential targets for early treatment (e.g., adjuvant therapy to prevent tumor

recurrence) of NSCLCs.

3.4.2 Limitations

While our study provides a comprehensive characterization of field cancerization in early-

stage NSCLCs, it is unable to decompose these effects further due to the lack of control

subjects. An additional question that remains unanswered is the clinical implications of

identifying mutations in normal-appearing cancerized fields.
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For the purpose of this analysis that was focused on characterizing the normal-

appearing airway field, a combined tumor profile consisting of the tumor section as well

as multiple CNB specimens, where available, was used. However, the significance of CNBs

in the field cancerization, perhaps to test for the presence of truncal tumor events, is not

leveraged here.

While we do hypothesize that the cancerized field gives rise to preneoplastic and

malignant phenotypes, it is however plausible that airway field mutations may not be clon-

ally selected in progression to lung premalignant and malignant phenotypes. For instance,

previous studies have described driver mutations (e.g., BRAF, KRAS ) that are relatively

more frequent in AAHs compared with LUADs [32, 44].

Nonetheless, our study of multiple tissues from early stage NSCLC patients points

toward the future of genomic investigations in medicine, where evolutionary trajectories can

be inferred from diverse spatial or temporal sampling. The molecular changes we detect in

these normal tissues present as early alterations in the transition to the malignant phenotype

of NSCLC.
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CHAPTER 4

INVESTIGATION OF PAN-CANCER PATTERNS OF CHROMOSOMAL

ALLELIC IMBALANCE IN THE CANCER GENOME ATLAS

The Cancer Genome Atlas (TCGA) provides a large repository of tumor specimens across

multiple tissue types and varied clinicopathological features, thus facilitating several pan-

cancer studies of cancer aneuploidy and tumor-specific copy-number signatures, such as

those derived from single nucleotide polymorphism (SNP) genotyping array platforms [89,

90, 91]. However, unique challenges compound the automated detection of chromosomal

somatic copy number alterations (SCNAs) from SNP arrays. First, the tumor samples are

often contaminated with normal cells and thereby necessitate more sensitive algorithms to

identify subtle events in possibly low cellularity samples. Second, most SCNA detection

methods report genomic regions of copy number alterations and their segment mean copy

number (CN) estimates, the characterization of which heavily relies on accurate identifica-

tion of non-aberrant regions of the genome to establish a baseline signal intensity represen-

tative of neutral CN. However, tumor samples exhibiting high levels of genomic instability

pose a challenge for such analyses.

Output from SNP genotyping arrays include the following two measurements per

site: the B-allele frequency (BAF), representing the ratio of the alleles at a locus; and log

R ratio (LRR), the total intensity of both allelic probes at the locus. The former is used

to identify regions of allelic imbalance (AI) while the latter is used for the characterization

of the identified events. Detection of AI can lead to the identification of SCNAs as well

as provide a largely unexplored, yet valuable class of chromosomal aberrations called copy-

neutral loss of heterozygosity (cnLOH). cnLOH events represent regions of zero net copy

number change, but present more severely altered ratio of alleles (e.g., change of germline

heterozygous loci AB to AA or BB, resulting in a 2:0 or 0:2 ratio). The landscape of cnLOH

regions in TCGA remains largely unknown due to the lack of algorithms for its automated

detection. Therefore, it is important to identify the landscape of these cnLOH events across
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tumor sites to better understand their role in the complex mechanisms of tumorigenesis such

as in two-hit modes of pathogenesis of tumors.

In this chapter, I describe my approach to identify the pan-cancer genomic land-

scape of chromosomal allelic imbalance in the TCGA. I highlight the previously unchar-

acterized set of cnLOH events and interrogate these for additional diagnostic or clinical

implications. I end the chapter by comparing our findings with previously reported SCNAs

in this dataset, and propose an automated method for the identification and adjustment of

putative problematic cases in TCGA.

4.1 Study Design

I present a comprehensive characterization of the pan-cancer atlas of allelic imbalance de-

rived copy number changes (e.g., gain, loss) as well as regions of cnLOH (Figure 4.1). I

utilized a sensitive haplotype-based framework, hapLOH, to identify regions in the genome

that exhibit AI, a deviation from the expected 1:1 ratio at germline heterozygous loci

[48]. SNP genotype profiling of 11,074 paired tumor-normal tissues across 33 tumor types

in TCGA were studied. AI derived events, particularly cnLOH events, were assessed for

global pan-cancer patterns as well as for tissue site-specificity. An automated method to

identify and adjust cases with putative problematic calls as compared to previously reported

SCNAs, was applied to the entire cohort, as described in Figure 4.1.

4.2 Methods

4.2.1 Dataset

The Level 1 raw CEL files from Affymetrix Genome-Wide Human SNP Array 6.0 profiling

of 11,074 paired tumor-normal samples across 33 cancer sites in The Cancer Genome Atlas

(TCGA) were downloaded from the Genomic Data Commons data portal, along with avail-

able clinical annotations. The cohort consisted of a majority of primary tumors (n=10,680),

with a few metastatic specimens (n = 394; SKCM accounting for 368 of these samples).

SNP metrics such as genotypes, BAF and LRR were used to reanalyze the dataset. The

cohort is summarized in Table 4.1.
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Tumor TCGA abbreviation
Number of tu-
mor samples

Adrenocortical carcinoma ACC 90
Bladder Urothelial Carcinoma BLCA 411
Breast invasive carcinoma BRCA 1101
Cervical squamous cell carcinoma and endo-
cervical adenocarcinoma

CESC 303

Cholangiocarcinoma CHOL 36
Colon adenocarcinoma COAD 462
Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma

DLBC 48

Esophageal carcinoma ESCA 186
Glioblastoma multiforme GBM 545
Head and Neck squamous cell carcinoma HNSC 527
Kidney Chromophobe KICH 66
Kidney renal clear cell carcinoma KIRC 529
Kidney renal papillary cell carcinoma KIRP 288
Acute Myeloid Leukemia LAML 200
Brain Lower Grade Glioma LGG 527
Liver hepatocellular carcinoma LIHC 377
Lung adenocarcinoma LUAD 517
Lung squamous cell carcinoma LUSC 502
Mesothelioma MESO 87
Ovarian serous cystadenocarcinoma OV 595
Pancreatic adenocarcinoma PAAD 185
Pheochromocytoma and Paraganglioma PCPG 183
Prostate adenocarcinoma PRAD 496
Rectum adenocarcinoma READ 168
Sarcoma SARC 261
Skin Cutaneous Melanoma SKCM 472
Stomach adenocarcinoma STAD 442
Testicular Germ Cell Tumors TGCT 156
Thyroid carcinoma THCA 509
Thymoma THYM 124
Uterine Corpus Endometrial Carcinoma UCEC 546
Uterine Carcinosarcoma UCS 55
Uveal Melanoma UVM 80

11074

Table 4.1: Summary of the tumor sites and samples analyzed across TCGA
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Figure 4.1: Study design to identify, compare and contrast chromosomal aberra-
tions in TCGA. A comprehensive characterization of allelic imbalance derived landscape
of somatic copy number alterations (SCNAs) as well as cnLOH in TCGA was carried out.
An automated approach to compare findings from this study with previously reported events
in the TCGA database was developed. Putative problematic samples were highlighted and
an automated adjustment procedure was applied to rectify these calls.

4.2.2 Pan-cancer allelic imbalance profiles using hapLOH

For each tumor sample in TCGA, the corresponding control sample (blood or tumor adja-

cent normal tissue) was assigned and phasing was performed using MaCH for the statistical

reconstruction of haplotypes. The phased genotypes as well as the BAFs were supplied as

inputs to run hapLOH using default parameters. The resulting regions of allelic imbalance

as inferred from hapLOH were then characterized based on the extent of BAF and LRR

deviations for each event region. Regions with LRR deviation ≥ 0.05 were classified as gains

while those with LRR deviations of ≤ -0.05 were classified as losses. The remaining events

were characterized as copy-neutral loss of heterozygosity if their BAF deviation was >0.1.

The events that were unable to be characterized into these different types were deemed to be

too subtle, due to low mutant cell fraction, for annotation. Of note, AI events with LRR ≥

0.08 and lesser than 2Mb in length were excluded as likely inherited duplications. The allelic

imbalance events spanning more than 70% of the genome were considered chromosomal-arm

level events, while the remaining were annotated as focal events. For each tumor sample,

the total number of events identified was used as a measure of its count burden, while the

percent of its genome under allelic imbalance was used as a measure of its genomic burden.
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4.2.3 TCGA pan-cancer copy number profiles

The processed chromosome arm-level SCNA files were downloaded from Broad GDAC Fire-

hose. The latest analyses version at the time of download was dated 2016_01_28. The

broad_values_by_arm.txt file for each TCGA study was then processed into bed format-

ted files using the specified amplification/deletion threshold of 0.1. These results were com-

pared with allelic imbalance derived chromosome-arm level SCNAs identified by hapLOH

for the same individuals.

4.2.4 Identification of putative problematic calls in TCGA

Allelic imbalance events identified in each tumor sample were reassessed at a chromosomal-

arm level, by concatenating events on each arm to identify specific chromosome-arms that

exhibited events at a fraction ≥ 0.7 of the arm, using a custom script. For the purpose of

SCNA comparisons, cnLOH events and subtle unclassified events were excluded from this

analysis. For every marker genotyped in the array, the presence (or absence) of an event

spanning the marker in both TCGA and hapLOH derived event calls were annotated as

1 (or 0) respectively. A Pearson correlation coefficient was computed from all markers.

Samples with a negative correlation were identified as potentially discordant and hence

putative problematic samples.

4.2.5 Automated adjustment of potentially problematic calls in TCGA

For each of the negatively correlated tumor samples identified through the procedure de-

scribe above, the normal region, as determined by hapLOH was identified. Events reported

by TCGA within these normal regions, as well as those that were identified as normal by

both methods were identified. A new weighted median copy number was calculated from

these events, weighed by the length of the event. The original calls made by TCGA were re-

calibrated using this newly determined normal copy number. Using the same specifications

as before, i.e. a amplification/deletion threshold of 0.1, the new set of chromosome-arm

event calls were reclassified. A correlation between these adjusted TCGA SCNA calls and

hapLOH derived SCNAs was calculated in a manner explained in the previous section.
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4.3 Results

Tumor genomes often exhibit high genomic instability, making the identification of copy

number alterations challenging due to limited normal region in their genomes. Here, a

sensitive haplotype-based technique was applied to identify the landscape of chromosomal

copy number changes (e.g.; gain, loss) as well as previously uncharacterized landscape of

cnLOH events from a survey of 11,074 paired tumor-normal specimens across 33 tumor

types in the TCGA. The cohort is summarized in Table 4.1. I also present the performance

of the automated procedure I developed to identify and adjust putative problematic cases.

Shown in Figure 4.2, are two pancreatic adenocarcinoma (PAAD) tumor samples

that motivate the utility of B-allele frequency (BAF) in the identification of chromosomal

aberrations. In Figure 4.2A, the tumor sample showed high concordance between hapLOH-

derived SCNAs and those reported in TCGA. In such cases, our approach of a BAF-derived

AI estimator supplements the database with additional, potentially impactful, chromosomal

aberrations. In this particular example, our method identified additional chromosome-

arm level cnLOH on chromosome 22 and arm 20p. Through this investigation, we aim to

supplement the SCNAs in TCGA using BAF patterns, a complementary data element to

the LRR-derived signal estimates, to identify chromosomal aberrations leading to allelic

imbalance. On the contrary, the PAAD tumor sample shown in Figure 4.2B showed a

complete discordance between the two methods. Here, the incorporation of deviations in

BAF suggested an incorrect estimation of the normal region. The SCNAs reported in

TCGA did not align with BAF deviations. However, the SCNAs, after adjustment, align

with deviations in BAF and thereby are concordant with hapLOH event calls. Through this

approach, we address differences between the call sets and suggest an automated method

to adjust specific cases with potentially problematic calls to aid the database with more

accurate SCNAs.

4.3.1 Pan-cancer allelic imbalance burden

Our method identified at least one AI event in 10,411 cases (94%), with a median count

burden of 20 events per case, spanning on average 31.88% of the genome (genomic burden).
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A

B

Figure 4.2: Examples highlighting the utility of a B-allele frequency in the iden-
tification of chromosomal aberrations. Two examples of pancreatic adenocarcinoma
(PAAD) tumor samples that motivate the implementation of a BAF-based approach are
shown. The tumor samples are annotated with chromosomal arm-level events downloaded
from BROAD GDAC Firehose along with the BAF and LRR distributions of the markers
profiled across the genome for that individual. Below these panels, are shown the event
probabilities inferred from hapLOH using the shifts in BAF, as well as classified event calls
from hapLOH using a threshold-based approach from BAF and LRR deviations, for the
identified event boundaries. Although all hapLOH events are shown, only chromosomal-
arm level events were used for the comparison to SCNAs identified in TCGA. (A) An
example of a PAAD tumor sample that exhibited overall concordance between the two call
sets, with additional cnLOH events identified by hapLOH. (B) An example of a PAAD tu-
mor sample with discordant calls between the two approaches. An automated adjustment
approach was applied, the result of which is shown in the at the bottom of this panel.
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But with high variation and cancer site specificity in this value, the patterns of genomic

burden and count burden were further assessed for each tumor site independently, to account

for the variability in number of samples and in molecular complexities across tumor types

(Figure 4.3, Table 4.2).
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Figure 4.3: Distribution of genomic burden and count burden across 33 tumor
sites. Boxplots of the overall genomic burden and count burden for the tumors studied
across 33 sites in TCGA are shown. The tumor sites are ordered by their median burden
for each plot.

Ovarian carcinoma (OV) showed the highest median count burden of 46, followed

by esophageal carcinoma (ESCA) with median count burden of 39 (Figure 4.3, Table 4.2).

Lung squamous cell carcinoma (LUSC), sarcomas (SARC), uterine carcinosarcoma (UCS),

lung adenocarcinomas (LUAD) and bladder cancer (BLCA) showed median count burdens

between 34 and 37 events (Figure 4.3, Table 4.2). At the other end of the spectrum were

thyroid carcinoma (THCA), acute myeloid leukemia (LAML), thymoma (THYM), uterine

corpus endometrial carcinoma (UCEC), uveal melanoma (UVM) that exhibited a median

count burden of less than five events (Figure 4.3, Table 4.2). Alternatively, tumors were also
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Tumor
Total

samples
Samples
with AI

Samples
with AI

(%)

Count
burden
(Mean)

Count
burden
(Me-
dian)

Genomic
burden
(Mean)

Genomic
burden
(Me-
dian)

ACC 90 90 100.00 25.08 22.5 0.5802 0.6326
BLCA 411 408 99.27 35.22 35 0.4924 0.5300
BRCA 1101 1093 99.27 31.21 29 0.4292 0.4366
CESC 303 301 99.34 21.74 20 0.3885 0.3444
CHOL 36 34 94.44 22.78 22.5 0.3928 0.3842
COAD 462 455 98.48 20.41 20 0.3927 0.3656
DLBC 48 47 97.92 16.65 14.5 0.2527 0.2011
ESCA 186 184 98.92 38.87 39 0.5954 0.6446
GBM 545 539 98.90 18.12 16 0.2656 0.2088
HNSC 527 526 99.81 27.67 26 0.4499 0.4324
KICH 66 64 96.97 12.32 11 0.4116 0.4115
KIRC 529 521 98.49 9.82 8 0.2387 0.1731
KIRP 288 281 97.57 8.59 7 0.2229 0.1996
LAML 200 106 53.00 2.37 1 0.0368 0.0014
LGG 527 517 98.10 11.92 9 0.1617 0.1317
LIHC 377 369 97.88 19.37 18 0.3509 0.3194
LUAD 517 514 99.42 33.98 34 0.5105 0.5539
LUSC 502 495 98.61 36.62 36.5 0.5858 0.5921
MESO 87 85 97.70 21.49 21 0.3221 0.2800
OV 595 592 99.50 47.23 46 0.6010 0.6202

PAAD 185 170 91.89 18.82 18 0.2994 0.2627
PCPG 183 179 97.81 8.30 7 0.1839 0.1543
PRAD 496 465 93.75 20.15 18 0.1369 0.0910
READ 168 167 99.40 26.53 26 0.5003 0.5100
SARC 261 253 96.93 38.21 35 0.4327 0.4069
SKCM 472 469 99.36 24.48 23 0.4441 0.4263
STAD 442 436 98.64 30.03 31.5 0.4420 0.4303
TGCT 156 156 100.00 26.69 27 0.6425 0.6504
THCA 509 195 38.31 1.22 0 0.0280 0.0000
THYM 124 85 68.55 5.24 2 0.1238 0.0263
UCEC 546 481 88.10 15.92 5 0.2350 0.1174
UCS 55 55 100.00 38.16 37 0.5599 0.5941
UVM 80 79 98.75 6.54 6 0.1827 0.1628

Table 4.2: Count burden and genomic burden for tumors across the 33 sites in TCGA.

assessed for patterns in the genomic burden from the identified AI events. Testicular germ

cell tumors (TCGT), ESCA, adrenocortical carcinoma (ACC) and OV had high overall

genomic burdens, with a median greater than 60 percent of the genome (Figure 4.3, Table

4.2). UCS, LUSC and LUAD also exhibited high genomic burden, with medians over 50%

of the genome (Figure 4.3, Table 4.2). Of note, as shown in Figure 4.4, the metastatic

SKCM samples (n=368) exhibited significantly higher genomic burden of AI events than

the primary tumor samples (n=104) within this dataset (Wilcoxon rank sum test, P value

= 0.001).

Each event type showed varied patterns for count and genomic burdens across tumor

types (Figure 4.6, Figure 4.5). Overall, among all event types, gains and loss events were

frequent while cnLOH events were less common. In particular, OV tumors showed the

highest median counts for loss and gain events (Figure 4.5). In terms of overall genomic

burden, TGCT, UCS, ESCA and OV showed the highest median genomic burdens for gains,

while ACC, KICH, OV, LUSC and UCS showed high genomic burdens for losses (Figure

4.6). The relative abundance of cnLOH was overall lesser than gains and losses, and spanned
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Figure 4.4: Allelic imbalance burden in primary and metastatic melanoma sam-
ples. Boxplots of the overall genomic burden for the primary SKCM tumors and metastatic
SKCM tumors are shown. The individual sample-level burden is overlaid as red points on
the boxplot.

smaller proportions of the genome (Figure 4.6); the highest rates of cnLOH genomic burdens

were observed in TGCT, ESCA, LUSC, UCS and OV (Figure 4.6).

The different tumor sites also seems to show different patterns of enrichment of

the three event types (Figure 4.7). While some cancers, such as KICH and ACC, showed

pronounced and preferential enrichment of loss events, tumors such as KIRP and TGCT

showed high gain burdens (Figure 4.7).

4.3.2 Landscape of chromosome arm-level copy number changes across tumor

sites

Since our method is better designed to identify large chromosomal changes such as those that

span an entire chromosome or chromosome arm, I examined in greater depth chromosome-

arm level events across the 33 tumor types (Figure 4.8). Our method identified 121,645

events in 10,004 tumor samples, of which 32,925 were gains and 57,161 were loss events.

Among these, the most common pan-cancer chromosome arm event occurred on 17p (Fig-

ure 4.8). Although 17p events were common among multiple tumor sites including ACC,

KICH, COAD, LUAD, LUSC, PAAD, ESCA and BRCA, some tumor sites did not show an

enrichment for 17p allelic imbalance, such as GBM, KIRC, THCA, UVM an PRAD (Figure
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Figure 4.5: Distribution of count burden for each event type across 33 tumor
sites. Boxplots of the overall count burden and burdens for each event type are shown
across 33 tumor types in TCGA. The tumor sites are ordered by their median burden for
each plot.
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Figure 4.6: Distribution of genomic burden for each event type across 33 tumor
sites. Boxplots of the overall genomic burden and burdens for each event type are shown
across 33 tumor types in TCGA. The tumor sites are ordered by their median burden for
each plot.
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Figure 4.7: Genomic burden for each event type compared within each of the 33
tumor sites. Boxplots of the overall genomic burden for each event type in all 33 tumor
sites in TCGA are shown.
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4.8). Among cases that showed copy number changes on 17p, most comprised loss events;

KIRP was the only tumor site that showed abundance of 17p gain events. Events on 8p

and 3p were also prevalent across multiple tumor sites (Figure 4.8). While most cancer

types showed a loss of 8p, LAML and UVM exhibited predominantly gain events; STAD,

UCEC, and COAD showed mixed event types on 8p (Figure 4.8). Particularly in PRAD,

8p loss events were predominant with rest of genome being relatively stable, showing lim-

ited events in the rest of the genome such as 8q gain and 18q loss. As with 17p events,

loss of 3p occurred across many tumor sites (Figure 4.8). Particularly in KIRC, 3p loss

events seemed to the driver event, with rest of the genome showing very limited evidence

for chromosomal instability (Figure 4.8). 3p loss events were also prevalent in UVM, LUAD,

LUSC, HNSC, CHOL and CESC (Figure 4.8). 8q amplification was the most frequent pan-

cancer gain event, showing high occurrence in multiple tumor sites including UVM, LAML,

COAD, HNSC, STAD, UCEC, SKCM and LIHC (Figure 4.8). The second most prevalent

amplification was identified on chromosome arm 7p, particularly in KIRP, DLBC, COAD,

GBM, SKCM and STAD. Amplification of 1q was also observed across many tumor sites;

LUAD, LIHC, CESC, UCEC, SKCM and THYM showed relatively high occurrences of 1q

gain (Figure 4.8). Similarly, amplification of 20q seemed to be prevalent in gastrointestinal

tumors COAD, READ and STAD. (Figure 4.8). In contrast, chromosome arms 2p and 2q

were the least altered across tumor types; a predominant loss of 2p and 2q was observed

only in ACC and KICH, both of which consisted of very few cases.

Tumor sites could broadly be classified into two categories, based on the distribution

of chromosomal arm events across the genome. Some tumor sites such as UVM, THCA,

KIRC, LGG, LAML and PRAD showed a significant enrichment of at most a single or very

few chromosome arm events with the remaining parts of the genome being stable (Figure

4.8). For example, three tumor sites showed single arm events that dominated the allelic

imbalance profile in those tumors such as 22q loss in THCA, 3p loss in KIRC and 8p

loss in PRAD tumors. LGG tumors showed a significant enrichment of 1p and 19q loss

events, consistent with the known phenotype of 1p/19q codeletion in LGGs. In contrast

to LGGs, the other class of brain tumors, GBMs, exhibited a different allelic imbalance

profile. In GBM tumors, the frequent events included the loss of chromosome 10 and gain
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of chromosome 7 (Figure 4.8). LAML tumors, although from a small dataset, showed high

prevalence of chromosome 8 gains and to a lesser extent chromosome 7 loss events (Figure

4.8). UVM tumors also seemed to exhibit relatively few chromosomal arm events that

spanned losses of chromosome 3 and chromosome arm 6q, as well as gains of chromosome

8 and chromosome arm 6p 4.8). PCPG also showed few chromosome arms under allelic

imbalance, the most frequent being loss of 1p and 3q 4.8). Such tumor sites that were often

accompanied by the enrichment of a single or few chromosomal aberrations, might suggest

the role of these chromosome-arm events in driving tumorigenesis. In contrast to these

tumor sites that showed lower overall allelic imbalance burdens, tumor sites such as LUAD,

LUSC, BRCA, ESCA, ACC, TGCT, STAD, SKCM and SARC showed genome-wide allelic

imbalance patterns with multiple chromosomal aberrations 4.8).

Tumor sites could also be classified based on the enrichment of a specific event type

among the allelic imbalance events detected. For example, KIRP tumors seemed to be

primarily driven by gain events across multiple chromosomal arms. In contrast, tumor sites

such as KICH, PCPG, STAD and PAAD showed an enrichment of loss events across their

genomes (Figure 4.8, Figure 4.7). These results aid in understanding the site-specific origin

of different chromosomal changes that might be drive the development of different tumor

types.

4.3.3 Copy-neutral loss of heterozygosity patterns across tumor sites

Our method relies on identifying deviations in the expected 1:1 allelic ratios at germline

heterozygous loci, and therefore can accurately detect regions of cnLOH that result in

allelic ratios of 2:0 or 0:2 depending on the haplotype under cnLOH. Given that standard

methods that rely on identifying copy number changes from LRR intensities, this particular

class of chromosomal aberrations will be missed in such procedures. Therefore, I sought to

characterize the previously unknown landscape of cnLOH events across the 33 tumor sites

in TCGA. To date, this has not been comprehensively characterized in the TCGA.

Our method identified 20,454 cnLOH arm-level events across 5,222 cases in TCGA.

Among the different tumor sites profiles, TGCT and ESCA showed the highest rates of

genomic cnLOH burden as well as chromosome arm-level cnLOH events (Figure 4.6, Figure
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4.8). Figure 4.9 shows the distribution of chromosome arm-level cnLOH events across

the genome for each tumor site. The rates and patterns of cnLOH varied among the

tumor types and a few visually pronounced chromosome-arm level cnLOH events were

identified. Chromosome 17 showed the highest rates of cnLOH across tumor sites (Figure

4.9). Chromosome arm 3p, 6p and 2p also showed high rates of cnLOH events across tumor

sites (Figure 4.9).

I interrogated, in greater depth, the chromosome arm-level cnLOH that showed

enrichment within specific tumor sites. For example, LGG tumors showed prevalence of

cnLOH events on 17p (Figure 4.9), an observation that would be completely missed in

current copy number detection approaches that typically only use LRR intensities. In

addition, cases that exhibited 17p cnLOH in LGGs (n=114) were found to be mutually

exclusive of cases that exhibited the characteristic LGG event, 1p/19q co-deletion (n=160).

17p cnLOH were also identified as the predominant cnLOH event in ESCA, OV, LUSC and

HNSC tumors (Figure 4.9). These tumor sites also showed evidence for cnLOH events on

the q arm of chromosome 17, albeit to a lesser extent than 17p. 6p also showed high rates

of cnLOH, particularly in CESC tumors (Figure 4.9). In UCS tumors, despite high rates of

cnLOH across the genome, 11p cnLOH occurred more frequently than other cnLOH events

(Figure 4.9). I also observed tumor sites with multiple cnLOH events across the genomes,

i.e., without having any visually observable specificity for particular chromosome arm events.

For example, TGCT showed high rates of cnLOH arm-level events across the genome, with

events on chromosomes 6 and 2 being slightly more common than other parts of the genome

(Figure 4.9). Similarly, READ, LUAD, SKCM and STAD also showed genome-wide cnLOH

events. These results suggest the important role of investigating cnLOH events that might

be crucial drivers of oncogenesis across tumor sites.

4.3.4 Copy neutral loss of heterozygosity events and survival trends

Next, I investigated the correlations between the presence of specific chromosome-arm cn-

LOH events with survival within multiple tumor sites. I first looked for patterns in the

most common cnLOH in our dataset, 17p, across multiple tumor sites. I did not identify a

significant association between 17p cnLOH events and survival in LGG (P value = 0.41),
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Figure 4.9: Distribution of copy-neutral loss of heterozygosity chromosome-arm
events across 33 tumor sites. For each tumor site, the proportion of cases exhibiting
chromosome-arm level cnLOH events are shown as bar plots. The total number of samples
profiled for each tumor site is listed above each plot.
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HNSC (P value = 0.18), ESCA (P value = 0.43) or LUSC (P value = 0.77). LUSC patients

with 3p cnLOH also did not show significant association with survival (P value = 0.33).

The presence of 11p cnLOH in UCS patients showed a mild evidence of association with

survival (P value = 0.07), with tumors that exhibited this cnLOH event showing better

survival. Given the mutual exclusivity of 17p cnLOH and 1p/19q co-deletion in LGGs, I

also investigated for potential differences in survival trends among the two subtypes based

on their chromosomal aberration status. I found marginal evidence for a poor overall sur-

vival in cases that exhibited 17p cnLOH compared to those with the 1p/19q codeletion (P

value = 0.06). Overall, I was unable to find significant associations between the presence

of cnLOH events and survival in this cohort; however a few events exhibited trends that

would support the association, pending future studies. Further that these cnLOH may be

associated with additional gain or loss events, or point mutations, may allude to the lack

of strong trends in survival estimation for cnLOH events.

4.3.5 Putative problematic copy number profiles

Given the differences in the detection approaches, i.e. to identify allelic imbalance events

using BAF deviation based measurements, in comparison to the commonly used LRR mea-

sure for SCNA detection, I was interested in testing for consistency of our event calls with

previously identified chromosome-arm level SCNAs, using the approach described in Section

4.2.4. I used 10,680 tumor samples for this comparison, among which 8,893 samples showed

overall consistency (positive correlation) between the two sets. A total of 1,787 cases showed

negative correlation between our calls with those previously identified. A closer inspection

of these cases revealed a strong negative correlation (Pearson correlation, -0.7417) between

the overall genomic burden, derived from regions of allelic imbalance, and the concordance

of the two call sets, i.e., samples that exhibited high overall allelic imbalance burden tended

to show patterns of discordance between the two calls sets, consistent with the hypothesis

of incorrectly estimating the true normal region in an aberrant tumor genome. This trend

was consistent across all tumor sites (Figure 4.10).

A subset of 1653 tumor samples that exhibited a negative correlation between the

two SCNA cell sets as well as a high overall AI burden (≥ 50% of the genome) was identi-
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Figure 4.10: Relationship between overall allelic imbalance burden and correla-
tion between the SCNA calls. For each tumor site, a scatter plot of the overall allelic
imbalance (AI) genomic burden (y axis) and the correlation value (x axis), signifying con-
cordance of calls, for all samples profiled, is shown. Overall, samples that showed poor
correlation exhibited a higher genomic burden of allelic imbalance.
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fied. The rates of these putative problematic samples varied across tumor sites (Figure 4.11).

Table 4.3 summarizes the identified putative problematic samples by tumor site. The high-

est proportion of negatively correlated samples was observed in TGCT (64.7%) and ACC

(54.4%) consisting of a total of 150 and 90 profiled cases respectively. UCS also showed a

high rate of discordant calls (37%) from a total of 50 cases profiled. All three datasets were

relatively small, therefore sampling variation might account for this higher percentage of

discordant samples. However, relatively high rates of discordance, greater than 25% of the

samples, were also observed in larger studies such as ESCA (30.4%), READ (27.8%), OV

(27.6%) and BLCA (26.2%) (Figure 4.11, Table 4.3). The lung tumors (LUAD and LUSC)

also showed rates of 24% discordance (Figure 4.11, Table 4.3). In contrast, LAML dataset

(n=191) contained no discordant samples. (Figure 4.11, Table 4.3). Other tumor sites that

exhibited very low percent of discordant calls were THCA (1.2%), LGG (1.2%), PRAD

(1.2%) and DLBC (2.1%) (Figure 4.11, Table 4.3). The low discordant cases were often

observed in tumor sites that showed lower allelic imbalance burden, further supporting the

notion of incorrectly estimating the normal region in aberrant tumor genomes that may

result in potentially erroneous calls.

I next attempted to automatically adjust the copy number calls in these cases

using the approach described in Section 4.2.5. Among the identified problematic cases, the

adjusted SCNAs in 1224 samples resulted in a positive correlation. However, the rates of

performance of our automated adjustment protocol also varied by tumor sites, as shown in

Figure 4.12 and summarized in Table 4.3. For example, in tumor sites such as LGG, THCA,

PCPG and THYM, our automated approach successfully adjusted all discordant cases to

achieve a positive correlation of calls between all samples (Table 4.3). ACC and MESO

also achieved high rates of adjustment in over 90% of the potentially problematic cases

(Table 4.3). Across tumor sites, after performing the automated adjustment, the percent

of negatively correlated samples that remained was drastically lower. For example, the

percent of negatively correlated samples reduced from 54.4% to 4.4% in ACC, 23.1% to 6.6%

in SARC, 21.2% to 5.1% in SKCM, 20.9% to 4.1% in COAD. However, some tumor sites

continued to exhibit relatively high numbers of discordant cases, even after adjustment. For

example, TGCT showed negative correlation in 14% cases after adjustment; similarly ESCA,
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Figure 4.11: Distribution of concordant and discordant samples across TCGA. (A)
For each tumor site, a bar plot of the percent of putative problematic calls is shown. The
tumor sites are sorted by the percent of negatively correlated, high AI samples identified.
(B) For each tumor site, a stacked bar plot showing the number of cases that were positively
correlated and negatively correlated (high AI for those with ≥ 50% AI burden, low AI for
those with <50% AI burden) are shown.
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TCGA
Study

Total
cases

Cases
with

Correla-
tion

Positive
Correla-

tion

Negative
Correla-

tion
(Before)

Negative
Correla-

tion,
high AI
(Before)

Negative
Correla-

tion,
high AI
(Ad-

justed)

Negative
Correla-

tion,
high AI
(Before)

%

Negative
Correla-

tion,
high AI
(After)

%

Negative
Correla-

tion,
high AI
(Ad-

justed)
%

ACC 90 88 38 50 49 45 54.44 4.44 91.84
BLCA 404 378 260 118 106 74 26.24 7.92 69.81
BRCA 1071 1035 818 217 207 148 19.33 5.51 71.50
CESC 294 286 242 44 41 30 13.95 3.74 73.17
CHOL 36 34 26 8 7 7 19.44 0.00 100.00
COAD 439 389 293 96 92 74 20.96 4.10 80.43
DLBC 48 39 38 1 1 1 2.08 0.00 100.00
ESCA 184 177 119 58 56 38 30.43 9.78 67.86
GBM 505 497 470 27 24 21 4.75 0.59 87.50
HNSC 521 499 399 100 89 64 17.08 4.80 71.91
KICH 66 62 50 12 11 11 16.67 0.00 100.00
KIRC 516 481 438 43 30 22 5.81 1.55 73.33
KIRP 285 269 256 13 12 11 4.21 0.35 91.67
LAML 191 56 56 0 0 0 0.00 0.00 -
LGG 511 469 459 10 6 6 1.17 0.00 100.00
LIHC 370 356 316 40 39 31 10.54 2.16 79.49
LUAD 496 482 353 129 119 85 23.99 6.85 71.43
LUSC 500 492 365 127 120 81 24.00 7.80 67.50
MESO 87 83 72 11 11 10 12.64 1.15 90.91
OV 568 565 406 159 157 106 27.64 8.98 67.52

PAAD 183 144 119 25 20 16 10.93 2.19 80.00
PCPG 162 153 145 8 6 6 3.70 0.00 100.00
PRAD 488 331 314 17 6 4 1.23 0.41 66.67
READ 165 161 113 48 46 33 27.88 7.88 71.74
SARC 255 235 172 63 59 42 23.14 6.67 71.19
SKCM 367 355 271 84 78 59 21.25 5.18 75.64
STAD 440 396 308 88 80 55 18.18 5.68 68.75
TGCT 150 148 48 100 97 76 64.67 14.00 78.35
THCA 496 143 136 7 6 6 1.21 0.00 100.00
THYM 123 46 38 8 8 8 6.50 0.00 100.00
UCEC 535 389 342 47 45 34 8.41 2.06 75.56
UCS 54 52 28 24 20 15 37.04 9.26 75.00
UVM 80 74 69 5 5 5 6.25 0.00 100.00

Table 4.3: Summary statistics for the automated procedure for the identification and ad-
justment of putative problematic samples in TCGA
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UCS and OV also showed rates of 9.8%, 9.2% and 8.9% respectively, after adjustment (Table

4.3). Nonetheless, our approach was able to significantly reduce the rates of discordance,

compared to the trends observed before applying the adjustment protocol across all tumor

sites.

4.4 Discussion

Acquired chromosomal alterations such as deletions, duplications and copy-neutral loss-of-

heterozygosity serve as hallmarks of tumorigenesis. Large alterations span multiple het-

erozygous markers and thus result in deviations from the expected one-to-one allelic ratio,

thereby leading to allelic imbalance (AI). The SCNA pipeline of the TCGA consortium re-

ports genomic regions and their segment mean copy number estimates from SNP genotyping

arrays. Calibration of this process relies on the accurate identification of non-aberrant re-

gions of the genome to establish a baseline signal intensity representative of neutral copy

number. However, tumor samples exhibiting high levels of genomic instability pose a chal-

lenge for such analyses. The resulting poor calibration may lead to erroneous SCNA calls,

with obvious examples of highly aberrant chromosomes (by visual inspection) being missed

by the automated calling procedure and instead SCNAs called across normal-appearing

chromosome arms. Here we attempt to address this problem by integrating an orthog-

onal data source to triangulate regions more likely to be copy-neutral and then apply a

systematic adjustment procedure to rescue such cases.

4.4.1 Significance of findings

A sensitive allelic imbalance detector was used to reveal allele frequency patterns consistent

with acquired SCNAs as well as the landscape of previously unknown regions of cnLOH

across all 33 tumor sites in TCGA. The results presented here supplement the TCGA

repository with additional allelic imbalance derived chromosomal aberrations and suggest

tissue-site specific patterns of AI signatures.

A recent study summarized pan-cancer chromosomal aberrations and correlated

chromosomal arm aneuploidy to somatic point mutations and expression of immune sig-
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Figure 4.12: Trends of negatively correlated samples before and after applying an
automated adjustment protocol, across all tumor sites in TCGA. For each tumor
site, barplots of the percentage of samples that were negatively correlated before and after
the adjustment procedure are shown.
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naling genes [89]. Chromosomal copy number events identified in our present study cor-

roborated with their findings, such as the high prevalence of loss events on 17p and 8p, as

well as gains of 8q across tumor sites. Similarly, both studies identified that chromosome 2

was the least aberrant across tumor sites. Our allelic imbalance burden derived estimates

were also similar to the aneuploidy scores they presented across TCGA types [89]; however

I report higher burdens in ESCA and OV. Another pan-cancer atlas of the TCGA tumor

sites identified specific clusters of tumors based on the extent of aneuploidy and the type

of events [90]. I identified similar patterns from our allelic imbalance derived chromosome

arm-level aberrations. Both studies identified a subset of low burden sites that included

PRAD, THYM, LAML and THCA. Our results also identified the enrichment of 13q gain

and chromosome 18 loss in gastrointestinal tumors (COAD, READ, and STAD); in addition

to these events, I also observed high rates of chromosome 20 gains in these tumors. Simi-

larly, the previously identified enrichment of chromosome 7 gains and chromosome 10 losses

in GBM tumors was also observed in our dataset. These evidences for shared chromosomal

SCNA patterns between studies, validates our approach of identifying SCNAs from allelic

imbalance patterns.

In comparison to both these previous studies [89, 90], we also provide an additional

complementary landscape of pan-cancer cnLOH events that opens a window of opportunities

to investigate the importance of these subtle cnLOH events in tumorigenesis. A striking

result observed in this investigation was the recurrent cnLOH of 17p across multiple tumor

sites. This suggest that loss as well as cnLOH of 17p might be wide-spread and recurrent

across tumor sites. Based on recent evidences [92], it is possible that these pan-cancer 17p

loss and cnLOH affect a combination of genes, extending beyond the effects on the TP53

tumor suppressor gene.

Of particular interest were tumor samples that displayed conflicting SCNA events

as compared to previous reports. A closer examination of these cases, especially, when

overlaid with BAF distributions across the genome, suggested an incorrectly estimated

normal-region within these cases. These striking observations as well as the wide user base

of the TCGA repository motivated me to develop an automated procedure to identify and

adjust these putative problematic cases. By developing an automated identification and

106



adjustment procedure, I not only provide a list of these putative problematic call sets, but

also renormalize the calls for improved SCNA detection.

This study also showcased high rates of previously unknown chromosomal aberra-

tions across multiple tumor sites. For example, in KIRP tumors that were predominantly

driven by gain events, our findings aligned with previously identified high frequency gains

on chromosome 7 and 17, but I also identified a higher proportion of chromosome 16 gains

than previously reported [93]. Similarly in UCS tumors, I identified recurrent loss and cn-

LOH events of 17p as well as novel recurrent cnLOH of 11p. Given the prevalence of TP53

mutations in UCS [94], loss and cnLOH of 17p might confer somatic two-hit mechanisms

of mutagenesis in UCS tumors. In HNSC tumors, previously, highest rates of chromosomal

changes were reported on 8p and 3p [95]. Our method not only identified these events,

but also detected high rates of 17p loss and cnLOH events in these tumors. In this way,

findings from our study supplement the current database of chromosome-arm SCNAs across

multiple tumor sites, through the detection of additional chromosomal aberrations.

It is noteworthy that cnLOH events we identified to be enriched in our present

investigation across multiple tumor sites have been shown to be prognostically relevant in

independent studies. For example, I observed recurrent 17p cnLOH in LGGs in addition

to the well known 1p/19q codeletion; cnLOH of 17p, as well as its mutual exclusivity with

1p/19q codeletion, has been previously shown to be a potential marker in independent

cohorts of gliomas [96, 97, 98]. Similarly, 6p cnLOH were enriched in CESC tumors; this

corroborates previous studies that have identified LOH on 6p21.2 that was suggestive of

recurrence of cervical carcinoma after radiotherapy [99]. Therefore, cnLOH events presented

in this study may have the potential to serve as prognostic markers for the detection or

prediction of recurrence across tumor sites.

4.4.2 Limitations

Although our methods to identify as well as adjust previous SCNAs provide as a useful

resource for pan-cancer investigations of chromosomal aberrations, it doesn’t come without

limitations.

First, our approach relies on deviations in allelic ratios at germline heterozygous
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sites to identify regions of allelic imbalance. As a result of it, our method is currently

incapable of identifying balanced duplications since these events do not perturb the allelic

ratios.

Second, in line with the requirement of altered allelic ratios, our approach is better

at detecting loss or cnLOH events that results in a more severe change in allelic ratios (i.e.

1:0 or 2:0), in comparison to gains (e.g., one copy gains that results in a ratio of 1:2).

Third, although the statistical model is accurate and sensitive in identifying regions

of allelic imbalance, I currently implement a naive thresholding based classification to an-

notate events as loss, gain and cnLOH. However, this results in subtle events that show a

signal for allelic imbalance, but are not classifiable using our current LRR threshold based

approach. Nonetheless, these additional events supplement the current repository of copy

number alterations.

Lastly, our methodology to systematically adjust potential differences in the identi-

fied copy number alterations might suffer from overcorrection since this procedure is applied

across the entire genome, or an undercorrection in cancer genomes with complex events

(mixed gains and losses) in the expected normal region, as inferred by hapLOH, that will

not alter the estimated normal CN and therefore fails to adjust those event calls.

However, our overall goal, through this study, is to highlight the importance of inte-

grating multiple data types (B-allele frequency and Log R ratio) for more robust automated

inference procedures, which can run amok with single sources of data. These results have

the potential to support exploration of more rigorous methods across all the cancer types

in TCGA in order to improve downstream analyses and empirical discoveries, including

clinical evaluations and copy number-derived signatures. The landscape of cnLOH events

presented in this study will provide opportunities for future investigations of chromosomal

instability in tumorigenesis.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

The evolutionary trajectory of cancer development from a normal cell or tissue involves a

natural process of initiation and different stages of progression, that may comprise one or

more non-invasive premalignant or intermediate lesions. These stages prior to the develop-

ment of overt malignancies provide a window of opportunities for studying and designing

tumor intervention and prevention strategies.

A series of progressive pathological changes involving certain precursor lesions, with

corresponding genetic and epigenetic aberrations have been shown to be critical in tumor

development across organ sites, an example of which is lung [100]. This multi-step tumori-

genesis of precursor lesions is often accompanied by an accumulation of molecular changes,

and therefore genomic instability, that might be crucial for the development of malignant

phenotypes. A deeper understanding of the evolutionary dynamics of the initiation of pre-

malignant lesions suggests that molecular mechanisms leading to tumorigenesis begin even

before the growth of these clinically detectable premalignant lesions [10]. Therefore, molec-

ular changes might occur in normal-appearing tissues, prior to any morphological changes

associated with premalignancy are identifiable. A cancerized field is described as the precon-

ditioning of an area of the epithelium to a cancer-primed cell population, with no apparent

morphological changes [10]. These theories allude to the important role of cancerized fields

in initiation of premalignant and tumor phenotypes.

In lung cancers, a major challenge for early detection and intervention is the lack of

molecular characterization of the earliest stages of development, and thereby the paucity of

markers indicative of early stage disease. Studying stages preceding invasive lung tumors

such as preneoplastic and normal tissues may help address this gap in knowledge, however

investigations of these tissues are often compounded by additional challenges. First, there

is often very limited tissue available for molecular characterization of premalignant and nor-

mal tissues, perhaps due to the relatively small size of these premalignant lesions. Second,

109



genomic changes are present at low cellular fractions in preneoplastic and normal tissues,

making the mutant cell fraction low, i.e., few cells exhibit the change of interest. Third,

premalignant tissues may include a high contamination from DNA from normal cells. These

challenges not only demand more precise profiling technologies, but also require computa-

tional innovations to better detect and characterize molecular changes in these tissues.

Therefore, we attempted to comprehensively investigate the normal-appearing res-

piratory epithelia and premalignant lesions of early-stage non-small cell lung cancers, by

performing multi-platform integrative and innovative computational analyses to overcome

the challenges faced with profiling these premalignant and malignant tissues. In this chap-

ter, I summarize our conclusions and outline the contributions of this thesis. I discuss

possible future research directions and conclude by speculating on the impact of the bioin-

formatics approaches that I developed here to other cancer genomics studies, particularly

for investigations of premalignant fields of cancerization.

5.1 Contributions of this thesis

In this thesis, I describe our efforts to understand the molecular changes of premalignant

lesions and normal tissues using early-stage non-small lung cancers as a model. Given the

high prevalence and mortality of lung cancers worldwide, there is an urgent need to devise

better detection and treatment strategies to intercept or prevent the development of overt

lung malignancies at the earliest stages. Here, we characterize some of the earliest stages

preceding non-small cell lung cancers while attempting to capture the spatial and temporal

changes that might provide a better trajectory of normal tissues as well as premalignant

lesions transitioning to malignancy. I provide studies that address complementary and

independent questions, towards the long term goal of better characterizing these stages

preceding tumor development.

In Chapter 2, I describe our cross-platform integrative approach to comprehensively

characterize atypical adenomatous hyperplasia, the only known premalignant lesion to lung

adenocarcinomas. AAH were interrogated along with matched normal lung parenchyma

and tumor specimens. Such a study design allowed us to make comparisons between AAH
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and LUAD within and between patients, as well as better delineate the initiation and

progression phases of AAH and LUAD development. I proposed different mechanisms in

the pathogenesis of AAH, possibly driven from tobacco exposure; the study underscores

some of earliest mutation processes as well as gene expression changes, such as those leading

to altered immune signaling, that may play a critical role in the pathogenesis of AAH and

their progression to lung adenocarcinomas.

In Chapter 3, I report the mutational landscape of airway field of cancerization from

an independent and large collection of multi-region samples consisting of tumor-adjacent

and distant airway epithelia, nasal epithelia, uninvolved normal lung parenchyma, blood

and matched NSCLC specimens. I developed a quantitative measure (FCAUC) to better

identify and quantify the extent of field effects in these early-stage NSCLC patients. These

morphologically normal-appearing airway epithelia not only exhibited mutations in known

lung cancer drivers, but their overall mutational burden and variant allele frequencies sug-

gested a spatial field of cancerization effect, suggestive of clonal selection and expansion in

the transition to malignant phenotypes. Lastly, the identified multi-hit somatic progres-

sion models suggest a temporal ordering of events leading to mutation accumulation and

transition of normal-appearing airway lesions to NSCLC.

In Chapter 4, I expand our investigations of genomic instability to other tumor

types in The Cancer Genome Atlas Project. I provide a pan-cancer landscape of chromo-

somal allelic imbalance events, comprising copy number changes such as gains and losses,

as well as the previously undocumented landscape of copy-neutral loss of heterozygosity

in this data set of tumor genomes. I also propose an automated approach to identify and

adjust potentially problematic chromosomal copy number events previously reported in the

TCGA consortium. This work not only provides the cancer research community with a

complementary source of large chromosomal copy number alterations, but also provide a

new and important class of mutational events, cnLOH, that may play a crucial role in the

classical two-hit hypothesis for tumorigenesis, that may further involve an interplay with

germline variations.

This thesis also outlines several bioinformatic approaches to aid data analysis in low

mutant samples such as premalignant and airway field samples. For example, I developed a
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filter to remove potential false positive point mutation calls within homopolymer regions in

the genome; this tool is now part of our standard pipeline for quality control and processing

of point mutation calls in Ion Torrent technology. In addition, I utilized a combination of

mutational callers to increase our confidence in the identified mutation calls, particularly in

these pre-tumor stages. In Chapter 2, I developed a classifier to better visualize patterns

of gene expression changes between the normal lung and AAH as well as between AAH

and LUAD; this method serves as a novel extension to standard gene expression analysis

by aligning these changes temporally along the different stages of tumor development (e.g.,

normal, AAH, LUAD). Similarly, in Chapter 3, I developed statistical approaches to test

for spatial field effects using the mutation frequencies and proposed a new measure to

quantify the extent of field cancerization using the proportion of shared aberrations with

matched NSCLCs. These methods can further aid discoveries and interpretation of field

cancerization effects across other tumor types. In Chapter 4, using the TCGA cohort as

an example, I also developed methods to compare and contrast large chromosomal changes

identified using different software and platforms. Overall, the methods developed in this

dissertation highlight the need for integrative approaches to investigate these aberrations not

only in cancer genomes, but also in studies of precancerous lesions and somatic mosaicism

in normal tissues and cancerized fields.

In summary, the findings in this thesis highlight the utility of normal and premalig-

nant lesions as way to improve our knowledge of tumor development, using non-small cell

lung cancer as an example. This research may contribute towards developing strategies for

improved screening and detection, such as profiling airway epithelium, as well as towards

early treatment and possible prevention regimens of premalignant disease, particularly in

smokers or other individuals at elevated risk for lung cancer.

5.2 Future directions

The bioinformatic methods developed as a part of this thesis provide a proof-of-concept for

the utility and importance of applying quantitative metrics to understand pre-tumor and

tumor biology. However, there is potential to extend these approaches to incorporate more
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sophisticated statistical models to better characterize these molecular changes. For exam-

ple, the test for spatial field effects uses a linear regression model. However, this is limited

by fluctuations based on the distance measures supplied to the model. A framework that

treats these field tissues as an ordinal variable, or uses precise distances available through

histopathological aids, may improve its performance or aid interpretation and characteri-

zation of these spatial effects. Similarly, the automated procedure to identify and adjust

potentially problematic chromosomal alterations in the TCGA repository, can be improved

by applying separate adjustments for gain and loss events.

Our efforts to characterize AAH lesions in early stage LUADs of 23 individuals, lends

to the need for future longitudinal studies with a larger number of AAH samples and in

larger cohorts, wherein mutations, gene expression and markers of the immune response can

be aligned with time and space. Our study was restricted to an East-Asian cohort, further

suggesting that investigations in different cohorts, perhaps comprising individuals from

different populations, may help identify population-specific molecular patterns and trends

in AAHs. Additionally, tracking AAHs in patients without overt lung malignancy may

also help distinguish drivers of AAH progression from benign lesions. Such a study design

may further delineate the effects of field cancerization into those involved in progression to

premalignant and malignant phenotypes. Another natural extension to the current study

involves the investigation of other minimally invasive lesions such as AIS and MIA implicated

in LUAD pathogenesis along with matched AAH lesions, to better contextualize the role of

AAHs in development of these less invasive lesions. Recent and ongoing efforts have begun

to distinguish potentially distinct profiles in the multi-step progression of AAH to AIS and

subsequently to LUAD [101, 8, 40].

Immune-based therapy has come to the forefront of targeted therapeutic strategies

for various malignancies, including lung cancers [102]. In this context, there is a growing

demand to leverage premalignant lesions in cancer immunotherapeutic strategies [103, 104].

Therefore, additional work to extend the immune marker deregulation identified in AAHs

of our cohort, might suggest measures for targeting immune responses and signaling (e.g.,

immune checkpoint blockade) as a viable strategy to prevent progression of preneoplasia

such as AAH. For example, ongoing studies have begun to investigate neoantigen profiles
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in AAH [101], analogous to patterns seen in LUADs [105]. Hence, future studies examining

protein levels of markers of various immune cell infiltrates (e.g., immunohistochemistry

methods) will shed more light on the role of the immune response in AAH pathogenesis.

Interestingly, recent studies suggest that driver mutations are likely to be found in

preconditioned epithelial fields of phenotypically healthy individuals [106, 107]. In this re-

gard, future studies, perhaps integrating our efforts of characterizing the field cancerization

effect in early-stage NSCLCs with similar studies in control subjects (e.g., lung cancer-free

smokers), may improve our understanding of field cancerization in lung cancer pathogenesis.

Such a study will help differentiate and better understand the multi-step path to NSCLC

pathogenesis from the airway field of injury. Additionally, given the young age of this co-

hort collection, a longitudinal follow-up, including a continued sampling of airway epithelia

as well as an up-to-date record of clinical features (e.g., treatment regimen, smoking sta-

tus, recurrence status, survival status), may help provide insights into the potential role

of profiling airway epithelia to predict recurrence, relapse, response to treatment as well

as survival. Another computational extension to the study involves probing intra-field and

intra-tumor heterogeneity patterns in early-stage NSCLCs, especially in a subset of cases

with multiple core needle biopsies of the tumor. Such an analysis might provide evidence

for the presence of truncal tumor mutations in the airway field, further offering insights into

tumor development or recurrence.

I presented independent studies to investigate molecular aberrations in premalig-

nant and cancerized fields of NSCLCs. However, future studies, concurrently studying

matched airway field, premalignant and malignant tumor tissues may help create a more

comprehensive genomic roadmap to NSCLC pathogenesis.

The work described in Chapter 4 involving a pan-cancer investigation of TCGA,

provides a repository of adjusted chromosome-arm copy number alterations in TCGA as

well as additional allelic imbalance derived chromosomal aberrations, such as regions of

copy-neutral loss of heterozygosity. Future work, perhaps integrating these sources of aber-

rations along with focal copy number alterations and point mutation profiles, can aid in

discoveries of compounded mutation signatures across tumor types, that may also present

prognostic potential. Our findings of widespread loss and cnLOH on 17p warrants studies
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that investigate the differences between these two event types on 17p, as well as their role

with respect to the presence of important driver gene mutations (e.g., TP53 ) can aid in

better understanding the dynamics of tumors that exhibit these multi-hit aberrations. In

addition, investigations of allelic imbalance in tumor-adjacent normal tissues in TCGA can

also inform of field cancerization mechanisms across tumor sites. Computationally, future

methods to jointly model BAF and LRR in the statistical estimation of allelic imbalance

might offer more sensitivity and help identify events such as balanced duplications, that are

currently unidentifiable using our approach.

In this thesis, I focused on identifying the somatic mutation landscape of these

premalignant and normal tissues, however, a crucial and complementary form of data derives

from the germline landscape of inherited variants. Therefore, the somatic mutations and

chromosomal aberrations identified in these studies can be integrated with matched germline

variants to infer other complex mechanisms of NSCLC pathogenesis.

5.3 Summary

This dissertation presented a data-driven genomics approach to investigate normal and pre-

malignant tissues, using early-stage lung cancers as a model of study. The study design,

profiling technologies and bioinformatic approaches developed and implemented in this the-

sis provide great potential for utility in ongoing large-scale investigations, such as in the

development of the PreCancer Atlas [108]. The findings also carry significant potential in

predicting outcomes in high-risk patients, and may lead to novel biomarker discovery and

personalized chemo-preventive strategies in these tumors.
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APPENDIX A

PHYLOGENETIC ANALYSIS OF FIELD CANCERIZATION

The methods described in Section 3.2.6.3 were used to infer within-patient inter-sample

relationships for all 48 individuals in the cohort. Phylogenetic trees were constructed based

on the extent of shared events, comprising both single nucleotide mutations (SNVs) and

allelic imbalance derived chromosome-arm level alterations (AI). A scale is attached to each

tree, describing the number of aberrations. Each node in the tree, corresponding to the

samples profiled for that individual, are denoted by their tissue annotation and a red circle,

scaled to the total number of observed aberrations in that tissue. Where available, the

profiles of tumor core-needle biopsy samples were combined with the matched tissue biopsy

(collectively denoted as T), for the construction of these trees. The tissues are denoted as

follows: Tumor (T), tumor-adjacent small airways (S1-S5), distant large airway (L), nasal

epithelium (Na) and uninvolved normal lung parenchyma (N). Trees exhibiting non-linear

structures, thereby indicating shared events between matched NSCLCs and airway field,

were identified as potential exhibitors of genomic airway field carcinogenesis. The trees for

all 48 individuals are shown below.
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Phylogenetic trees were also constructed independently for the two different types

of aberrations studied: single nucleotide mutations (SNVs) and allelic imbalance derived

chromosome-arm level alterations (AI). The concordance of tree structures was tested using

all.equal.phylo function in the ape R package, while setting use.tip.label=TRUE. The

AI-derived trees and SNV-derived trees for all 48 individuals are shown below. A scale is

attached to each tree, describing the number of aberrations. Each node in the tree, corre-

sponding to the samples profiled for that individual, are denoted by their tissue annotation

and a red circle, scaled to the total number of observed aberrations in that tissue. Where

available, the profiles of tumor core-needle biopsy samples were combined with the matched

tissue biopsy (collectively denoted as T), for the construction of these trees. The tissues are

denoted as follows: Tumor (T), tumor-adjacent small airways (S1-S5), distant large airway

(L), nasal epithelium (Na) and uninvolved normal lung parenchyma (N).
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