10 research outputs found
Oxidative stress in keratoconus
PURPOSE. The purpose of this study was to establish the alterations of oxidative stress-related markers in keratoconus (KC) corneas. METHODS. A total of 6 healthy and 11 ectatic corneas (7 KC and 4 post-LASIK) were studied. Different oxidative stress-related markers were determined to assess their implication in the KC pathophysiology. Total antioxidant capacity and total nitrites present in the samples were assayed. Furthermore, lipid peroxidation products and the glutathione contents were determined, together with 4-hydroxynonenal (4-HNE) immunohistochemistry, to establish the relationship between KC and oxidative stress. RESULTS. The antioxidant capacity and glutathione content in KC corneas were decreased significantly when compared with healthy corneas. Moreover, the total nitrites and lipid peroxidation were significantly elevated in the corneas with KC when compared with the controls. There was a statistically significant difference in the amount of HNE-positive cells in KC corneas when compared with healthy corneas by immunohistochemistry. Post-LASIK ectatic corneas and KC corneas showed similar results. CONCLUSIONS. The increased levels of oxidative stress markers and the decreased antioxidant capacity and antioxidant defenses in KC corneas, as well as in the post-LASIK ectatic corneas, indicate that oxidative stress might be involved in the development of this disease and may provide new insights for its prevention and treatment in the future. (Invest Ophthalmol Vis Sci. 2011;52:8592-8597
Oxidative stress in keratoconus?
PURPOSE. The purpose of this study was to establish the alter ations of oxidative stress-related markers in keratoconus (KC) corneas. METHODS. A total of 6 healthy and 11 ectatic corneas (7 KC and 4 post-LASIK) were studied. Different oxidative stress-related markers were determined to assess their implication in the KC pathophysiology. Total antioxidant capacity and total nitrites present in the samples were assayed. Furthermore, lipid per oxidation products and the glutathione contents were deter mined, together with 4-hydroxynonenal (4-HNE) immunohis tochemistry, to establish the relationship between KC and oxidative stress. RESULTS. The antioxidant capacity and glutathione content in KC corneas were decreased significantly when compared with healthy corneas. Moreover, the total nitrites and lipid peroxidation were significantly elevated in the corneas with KC when compared with the controls. There was a statistically signifi cant difference in the amount of HNE-positive cells in KC corneas when compared with healthy corneas by immunohis tochemistry. Post-LASIK ectatic corneas and KC corneas showed similar results. CONCLUSIONS. The increased levels of oxidative stress markers and the decreased antioxidant capacity and antioxidant de fenses in KC corneas, as well as in the post-LASIK ectatic corneas, indicate that oxidative stress might be involved in the development of this disease and may provide new insights for its prevention and treatment in the future. (Invest Ophthalmol Vis Sci. 2011;52:8592- 8597) DOI:10.1167/iovs.11-773
Low glutathione peroxidase in rdl mouse retina increases oxidative stress and proteases
Malondialdehyde, reduced glutathione, glutathione peroxidase, glutathione reductase and cysteine protease cathepsins at postnatal (PN) days 2, 7, 14, 21 and 28 in controls (wt) and the retinal degeneration 1 (rd1) mouse model for retinitis pigmentosa retinas were measured to determine oxidative stress. In PN28 wt and PN2 rd1 retinas, elevated malondialdehyde and low glutathione peroxidase activity indicate higher oxidative load, despite higher reduced glutathione in PN2 rd1 retinas. This is due to physiological exposure to light and retinal vascular/neural restructuring, respectively. Compared with wt retinas, relatively high malondialdehyde at PN2 and cathepsin levels at PN14, 21 and 28 in rd1 retinas indicate that cells of the residual inner retina also contribute to the oxidative stress and retinal degeneration
Donor cornea transfer from Optisol GS to organ culture storage: a two-step procedure to increase donor tissue lifespan
Purpose:  Storage time for donor corneas in Optisol GS is limited compared to Eye Bank Organ Culture (EBOC). We here examine the epithelium on donor corneoscleral rims after primary storage in Optisol GS and subsequent incubation in EBOC.
Methods:  Morphology was monitored by light and electron microscopy, expression of phenotypic and genotypic markers by immunohistochemistry and RT-PCR and changes in oxidative lipid and DNA damage by ELISA and COMET assay.
Results:  A prominent loss of cells was observed after storage in Optisol GS. After maintenance in EBOC, spreading apical cells were Occludin+, while the staining for E-cadherin and Connexin-43 was less intense. There were an upregulation of Occludin and a downregulation of E-cadherin and Connexin-43. Eye Bank Organ Culture was associated with an ongoing proliferative activity and a downregulation of putative progenitor/stem cell marker ABCG2 and p63. Staining for 8-OHdG and Caspase-3 did not increase, while levels of malondialdehyde and number of DNA strand breaks and oxidized bases increased.
Conclusions:  This dual procedure should be pursued as an option to increase the storage time and the pool of available donor corneas. The observed downregulation of markers associated with stemness during EBOC is relevant considering the potential use of donor epithelium in the treatment of ocular surface disorders.
Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#\OnlineOpen_Term
Implementing precision cancer medicine in the public health services of Norway: the diagnostic infrastructure and a cost estimate
Objective Through the conduct of an individual-based intervention study, the main purpose of this project was to build and evaluate the required infrastructure that may enable routine practice of precision cancer medicine in the public health services of Norway, including modelling of costs.
Methods An eligible patient had end-stage metastatic disease from a solid tumour. Metastatic tissue was analysed by DNA sequencing, using a 50-gene panel and a study-generated pipeline for analysis of sequence data, supplemented with fluorescence in situ hybridisation to cover relevant biomarkers. Cost estimations compared best supportive care, biomarker-agnostic treatment with a molecularly targeted agent and biomarker-based treatment with such a drug. These included costs for medication, outpatient clinic visits, admission from adverse events and the biomarker-based procedures.
Results The diagnostic procedures, which comprised sampling of metastatic tissue, mutation analysis and data interpretation at the Molecular Tumor Board before integration with clinical data at the Clinical Tumor Board, were completed in median 18 (8-39) days for the 22 study patients. The 23 invasive procedures (12 from liver, 6 from lung, 5 from other sites) caused a single adverse event (pneumothorax). Per patient, 0–5 mutations were detected in metastatic tumours; however, no actionable target case was identified for the current single-agent therapy approach. Based on the cost modelling, the biomarker-based approach was 2.5-fold more costly than best supportive care and 2.5-fold less costly than the biomarker-agnostic option.
Conclusions The first project phase established a comprehensive diagnostic infrastructure for precision cancer medicine, which enabled expedite and safe mutation profiling of metastatic tumours and data interpretation at multidisciplinary tumour boards for patients with end-stage cancer. Furthermore, it prepared for protocol amendments, recently approved by the designated authorities for the second study phase, allowing more comprehensive mutation analysis and opportunities to define therapy targets