138 research outputs found

    Quantitative Analysis of Histone Modifications: Formaldehyde Is a Source of Pathological N6-Formyllysine That Is Refractory to Histone Deacetylases

    Get PDF
    Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N[superscript 6]-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3β€²-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N[superscript 6]-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N[superscript 6]-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N[superscript 6]-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1–4 modifications per 10[superscript 4] lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 10[superscript 4] lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N[superscript 6]-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N[superscript 6]-formyllysine, with use of [[superscript 13]C,[superscript 2]H[subscript 2]]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N[superscript 6]-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10%) with a peptide substrate containing the formyl adduct. These data suggest that N[superscript 6]-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary modification

    Identification of Novel Ξ±-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method

    Get PDF
    Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated Ξ±-synuclein (Ξ±-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of Ξ±-syn in brain tissue homogenates. N-terminally acetylated full-length Ξ±-syn (Ac-Ξ±-syn1–140) and two N-terminally acetylated C-terminally truncated forms of Ξ±-syn (Ac-Ξ±-syn1–139 and Ac-Ξ±-syn1–103) were found. The different forms of Ξ±-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of Ξ±-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA)

    Hydrogen Bonding Constrains Free Radical Reaction Dynamics at Serine and Threonine Residues in Peptides

    Get PDF
    Free radical-initiated peptide sequencing (FRIPS) mass spectrometry derives advantage from the introduction of highly selective low-energy dissociation pathways in target peptides. An acetyl radical, formed at the peptide N-terminus via collisional activation and subsequent dissociation of a covalently attached radical precursor, abstracts a hydrogen atom from diverse sites on the peptide, yielding sequence information through backbone cleavage as well as side-chain loss. Unique free-radical-initiated dissociation pathways observed at serine and threonine residues lead to cleavage of the neighboring N-terminal C_α–C or N–C_Ξ± bond rather than the typical Cα–C bond cleavage observed with other amino acids. These reactions were investigated by FRIPS of model peptides of the form AARAAAXAA, where X is the amino acid of interest. In combination with density functional theory (DFT) calculations, the experiments indicate the strong influence of hydrogen bonding at serine or threonine on the observed free radical chemistry. Hydrogen bonding of the side-chain hydroxyl group with a backbone carbonyl oxygen aligns the singly occupied Ο€ orbital on the Ξ²-carbon and the N–C_Ξ± bond, leading to low-barrier Ξ²-cleavage of the N–C_Ξ± bond. Interaction with the N-terminal carbonyl favors a hydrogen-atom transfer process to yield stable c and zβ€’ ions, whereas C-terminal interaction leads to effective cleavage of the C_α–C bond through rapid loss of isocyanic acid. Dissociation of the C_α–C bond may also occur via water loss followed by Ξ²-cleavage from a nitrogen-centered radical. These competitive dissociation pathways from a single residue illustrate the sensitivity of gas-phase free radical chemistry to subtle factors such as hydrogen bonding that affect the potential energy surface for these low-barrier processes

    Identification of Combinatorial Patterns of Post-Translational Modifications on Individual Histones in the Mouse Brain

    Get PDF
    Post-translational modifications (PTMs) of proteins are biochemical processes required for cellular functions and signalling that occur in every sub-cellular compartment. Multiple protein PTMs exist, and are established by specific enzymes that can act in basal conditions and upon cellular activity. In the nucleus, histone proteins are subjected to numerous PTMs that together form a histone code that contributes to regulate transcriptional activity and gene expression. Despite their importance however, histone PTMs have remained poorly characterised in most tissues, in particular the brain where they are thought to be required for complex functions such as learning and memory formation. Here, we report the comprehensive identification of histone PTMs, of their combinatorial patterns, and of the rules that govern these patterns in the adult mouse brain. Based on liquid chromatography, electron transfer, and collision-induced dissociation mass spectrometry, we generated a dataset containing a total of 10,646 peptides from H1, H2A, H2B, H3, H4, and variants in the adult brain. 1475 of these peptides carried one or more PTMs, including 141 unique sites and a total of 58 novel sites not described before. We observed that these PTMs are not only classical modifications such as serine/threonine (Ser/Thr) phosphorylation, lysine (Lys) acetylation, and Lys/arginine (Arg) methylation, but also include several atypical modifications such as Ser/Thr acetylation, and Lys butyrylation, crotonylation, and propionylation. Using synthetic peptides, we validated the presence of these atypical novel PTMs in the mouse brain. The application of data-mining algorithms further revealed that histone PTMs occur in specific combinations with different ratios. Overall, the present data newly identify a specific histone code in the mouse brain and reveal its level of complexity, suggesting its potential relevance for higher-order brain functions

    Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation

    Get PDF
    Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56

    Identification of Lysine 37 of Histone H2B as a Novel Site of Methylation

    Get PDF
    Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function
    • …
    corecore