11 research outputs found

    Osteocytes and primary cilia

    Get PDF
    Purpose of Review The purpose of this review is to provide a background on osteocytes and the primary cilium, discussing the role it plays in osteocyte mechanosensing. Recent Findings Osteocytes are thought to be the primary mechanosensing cells in bone tissue, regulating bone adaptation in response to exercise, with the primary cilium suggested to be a key mechanosensing mechanism in bone. More recent work has suggested that, rather than being direct mechanosensors themselves, primary cilia in bone may instead form a key chemo-signalling nexus for processing mechanoregulated signalling pathways. Recent evidence suggests that pharmacologically induced lengthening of the primary cilium in osteocytes may potentiate greater mechanotransduction, rather than greater mechanosensing. Summary While more research is required to delineate the specific osteocyte mechanobiological molecular mechanisms governed by the primary cilium, it is clear from the literature that the primary cilium has significant potential as a therapeutic target to treat mechanoregulated bone diseases, such as osteoporosis

    Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts

    Get PDF
    Bone turnover in vivo is regulated by mechanical forces such as shear stress originating from interstitial oscillatory fluid flow (OFF), and bone cells in vitro respond to mechanical loading. However, the mechanisms by which bone cells sense mechanical forces, resulting in increased mineral deposition, are not well understood. The aim of this study was to investigate the role of the primary cilium in mechanosensing by osteoblasts. MLO-A5 murine osteoblasts were cultured in monolayer and subjected to two different OFF regimens: 5 short (2 h daily) bouts of OFF followed by morphological analysis of primary cilia; or exposure to chloral hydrate to damage or remove primary cilia and 2 short bouts (2 h on consecutive days) of OFF. Primary cilia were shorter and there were fewer cilia per cell after exposure to periods of OFF compared with static controls. Damage or removal of primary cilia inhibited OFF-induced PGE2 release into the medium and mineral deposition, assayed by Alizarin red staining. We conclude that primary cilia are important mediators of OFF-induced mineral deposition, which has relevance for the design of bone tissue engineering strategies and may inform clinical treatments of bone disorders causes by load-deficiency.—Delaine-Smith, R. M., Sittichokechaiwut, A., Reilly, G. C. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts

    The effect of mechanical loading on osteogenesis of human dental pulp stromal cells in a novel in vitro model

    Get PDF
    Tooth loss often results in alveolar bone resorption because of lack of mechanical stimulation. Thus, the mechanism of mechanical loading on stem cell osteogenesis is crucial for alveolar bone regeneration. We have investigated the effect of mechanical loading on osteogenesis in human dental pulp stromal cells (hDPSCs) in a novel in vitro model. Briefly, 1 × 107 hDPSCs were seeded into 1 ml 3 % agarose gel in a 48-well-plate. A loading tube was then placed in the middle of the gel to mimic tooth-chewing movement (1 Hz, 3 × 30 min per day, n = 3). A non-loading group was used as a control. At various time points, the distribution of live/dead cells within the gel was confirmed by fluorescence markers and confocal microscopy. The correlation and interaction between the factors (e.g. force, time, depth and distance) were statistically analysed. The samples were processed for histology and immunohistochemistry. After 1-3 weeks of culture in the in-house-designed in vitro bioreactor, fluorescence imaging confirmed that additional mechanical loading increased the viable cell numbers over time as compared with the control. Cells of various phenotypes formed different patterns away from the reaction tube. The cells in the middle part of the gel showed enhanced alkaline phosphatase staining at week 1 but reduced staining at weeks 2 and 3. Additional loading enhanced Sirius Red and type I collagen staining compared with the control. We have thus successfully developed a novel in-house-designed in vitro bioreactor mimicking the biting force to enhance hDPSC osteogenesis in an agarose scaffold and to promote bone formation and/or prevent bone resorption

    Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow Mesenchymal stem cell

    No full text
    Dexamethasone (Dex) is used widely to induce differentiation in human mesenchymal stem cells (hMSCs); however, using a pharmaceutical agent to stimulate hMSC differentiation is not the best choice for engineered tissue transplantation due to potential side-effects. The goal of the present study was to investigate the effects of dynamic compressive loading on differentiation and mineralized matrix production of hMSCs in 3D polyurethane scaffolds, using a loading regimen previously shown to stimulate mineralised matrix production of mature bone cells (MLO-A5). hMSCs were seeded in polyurethane scaffolds and cultured in standard culture media with or without Dex. Cell-seeded scaffolds were compressed at 5% global strain for 2 h on day 9 and then every 5 days in a media-filled sterile chamber. Samples were tested for mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), collagen type 1 (col 1) and runt-related transcription factor-2 (RUNX-212 h) after the first loading, cell viability by MTS assay and alkaline phosphatase activity at day 12 of culture and cell viability, collagen content by Sirius red and calcium content by alizarin red at day 24 of culture. Neither Dex nor loading had significant effects on cell viability. Collagen content was significantly higher (p<0.01) in the loaded group compared with the non-loaded group in all conditions. There was no difference in ALP activity or the amount of collagen and calcium produced between the non-loaded group supplemented with Dex and the loaded group without Dex. We conclude that dynamic loading has the ability to stimulate osteogenic differentiation of hMSC in the absence of glucocorticoids

    Application of multiple forms of mechanical loading to human osteoblasts reveals increased ATP release in response to fluid flow in 3D cultures and differential regulation of immediate early genes

    No full text
    ATP is actively released into the extracellular environment from a variety of cell types in response to mechanical stimuli. This is particularly true in bone where mechanically induced ATP release leads to immediate early gene activation to regulate bone remodelling; however there is no consensus as to which mechanical stimuli stimulate osteoblasts the most. To elucidate which specific type(s) of mechanical stimuli induce ATP release and gene activation in human osteoblasts, we performed an array of experiments using different mechanical stimuli applied to both monolayer and 3D cultures of the same osteoblast cell type, SaOS-2. ATP release from osteoblasts cultured in monolayer significantly increased in response to turbulent fluid flow, laminar fluid flow and substrate strain. No significant change in ATP release could be detected in 3D osteoblast cultures in response to cyclic or static compressive loading of osteoblast-seeded scaffolds, whilst turbulent fluid flow increased ATP release from 3D cultures of osteoblasts to a greater degree than observed in monolayer cultures. Cox-2 expression quantified using real time PCR was significantly lower in cells subjected to turbulent fluid flow whereas c-fos expression was significantly higher in cells subjected to strain. Load-induced signalling via c-fos was further investigated using a SaOS-2 c-fos luciferase reporter cell line and increased in response to substrate strain and turbulent fluid flow in both monolayer and 3D, with no significant change in response to laminar fluid flow or 3D compressive loading. The results of this study demonstrate for the first time strain-induced ATP release from osteoblasts and that turbulent fluid flow in 3D up regulates the signals required for bone remodelling
    corecore