138 research outputs found
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling
BACKGROUND: High-grade gliomas are one of the most invasive and therapy-resistant cancers. We have recently shown that noncanonical NF-κB/RelB signaling is a potent driver of tumorigenesis and invasion in the aggressive, mesenchymal subtype of glioma. However, the relevant signals that induce activation of noncanonical NF-κB signaling in glioma and its function relative to the canonical NF-κB pathway remain elusive. METHODS: The ability of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) to regulate NF-κB signaling and promote tumor progression was investigated in both established and primary high-grade glioma tumor lines using a three-dimensional (3-D) collagen invasion assay. The roles of specific NF-κB proteins in regulating glioma cell invasion and expression of Matrix Metalloproteinase 9 (MMP9) in response to TWEAK were evaluated using shRNA-mediated loss-of-function studies. The ability of NF-κB-inducing kinase (NIK) to promote glioma growth in vivo was investigated using an orthotopic xenograft mouse model. RESULTS: In glioma cells that display elevated noncanonical NF-κB signaling, loss of RelB attenuates invasion without affecting RelA expression or phosphorylation and RelB is sufficient to promote invasion in the absence of RelA. The cytokine TWEAK preferentially activates the noncanonical NF-κB pathway through induction of p100 processing to p52 and nuclear accumulation of both RelB and p52 without activating the canonical NF-κB pathway. Moreover, TWEAK, but not TNFα, significantly increases NIK mRNA levels. TWEAK also promotes noncanonical NFκB-dependent MMP9 expression and glioma cell invasion. Finally, expression of NIK is sufficient to increase gliomagenesis in vivo. CONCLUSIONS: Our data establish a key role for NIK and noncanonical NF-κB in mediating TWEAK-induced, MMP-dependent glioma cell invasion. The findings also demonstrate that TWEAK induces noncanonical NF-κB signaling and signal-specific regulation of NIK mRNA expression. Together, these studies reveal the important role of noncanonical NF-κB signaling in regulating glioma invasiveness and highlight the therapeutic potential of targeting activation of NIK in this deadly disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12943-014-0273-1) contains supplementary material, which is available to authorized users
NF-κB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism
Cytokines, such as tumor necrosis factor-α (TNFα), potently inhibit the differentiation of mesenchymal cells and down-regulate the expression of Sox9 and MyoD, transcription factors required for chondrocyte and myocyte development. Previously, we demonstrated that NF-κB controls TNFα-mediated suppression of myogenesis through a mechanism involving MyoD mRNA down-regulation. Here, we show that NF-κB also suppresses chondrogenesis and destabilizes Sox9 mRNA levels. Multiple copies of an mRNA cis-regulatory motif (5′-ACUACAG-3′) are necessary and sufficient for NF-κB-mediated Sox9 and MyoD down-regulation. Thus, in response to cytokine signaling, NF-κB modulates the differentiation of mesenchymal-derived cell lineages via RNA sequence-dependent, posttranscriptional down-regulation of key developmental regulators
IKK-dependent, NF-κB-independent control of autophagic gene expression
The induction of mammalian autophagy, a cellular catabolic bulk-degradation process conserved from humans to yeast, was recently shown to require IKK, the upstream regulator of the NF-κB pathway. Interestingly, it was shown that this response did not involve classic NF-κB. Thus, the mechanism by which IKK promotes stimulus-induced autophagy is largely unknown. Here we investigate the role of IKK/NF-κB in response to nutrient deprivation, the classic autophagy-inducing stimulus. IKK and both the classic and non-canonical pathways of NF-κB are robustly induced in response to cellular starvation. Notably, cells lacking either catalytic subunit of IKK (IKKα or IKKβ) fail to induce autophagy in response to cellular starvation. Importantly, we show that IKK activity but not NF-κB, controls basal expression of the pro-autophagic gene LC3. We further demonstrate that starvation induces the expression of LC3 and two other essential autophagic genes, ATG5 and Beclin-1, in an IKK-dependent manner. These results demonstrate that the IKK complex is a central mediator of starvation-induced autophagy in mammalian cells and suggest that this requirement occurs at least in part through the regulation of autophagic gene expression. Interestingly, NF-κB subunits are dispensable for both basal and starvation-induced expression of pro-autophagic genes. However, starvation-induced activation of NF-κB is not inconsequential as increases in expression of anti-apoptotic NF-κB target genes such as cIAP2 is observed in response to cellular starvation. Thus, IKK likely plays multiple roles in response to starvation by regulating NF-κB-dependent anti-apoptotic gene expression as well as controlling expression of autophagic genes through a yet undetermined mechanism
Essential Role for Epidermal Growth Factor Receptor in Glutamate Receptor Signaling to NF-Â B
Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-κB, which regulates cell proliferation and survival, is activated by glutamate; however, the glutamate receptor-induced signaling pathways that lead to this activation are not clearly defined. Here we investigate the glutamate-induced activation of NF-κB in glial cells of the CNS, including primary astrocytes. We show that glutamate induces phosphorylation, nuclear accumulation, DNA binding, and transcriptional activation function of glial p65. The glutamate-induced activation of NF-κB requires calcium-dependent IκB kinase α (IKKα) and IKKβ activation and induces p65-IκBα dissociation in the absence of IκBα phosphorylation or degradation. Moreover, glutamate-induced IKK preferentially targets the phosphorylation of p65 but not IκBα. Finally, we show that the ability of glutamate to activate NF-κB requires cross-coupled signaling with the epidermal growth factor receptor. Our results provide insight into a glutamate-induced regulatory pathway distinct from that described for cytokine-induced NF-κB activation and have important implications with regard to both normal glial cell physiology and pathogenesis
NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway
A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors
Blimp-1/PRDM1 Mediates Transcriptional Suppression of the NLR Gene NLRP12/Monarch-1
NLR (nucleotide-binding domain, leucine-rich repeat) proteins are intracellular regulators of host defense and immunity. One NLR gene, NLRP12/Monarch-1, has emerged as an important inhibitor of inflammatory gene expression in human myeloid cells. This is supported by genetic analysis linking the loss of a functional NLRP12 protein to hereditary periodic fever. NLRP12 transcription is diminished by specific TLR stimulation and myeloid cell maturation, consistent with its role as a negative regulator of inflammation. The NLRP12 promoter contains a novel Blimp-1/PRDM1 binding site, and Blimp-1 reduces NLRP12 promoter activity, expression and histone 3 acetylation. Blimp-1 associates with the endogenous NLRP12 promoter in a TLR-inducible manner and mediates the down-regulation of NLRP12 expression by TLR agonists. As expected, the expression of NLRP12 and Blimp-1 is inversely correlated. Analysis of Blimp-1-/- murine myeloid cells provides physiologic evidence that Blimp-1 reduces NLRP12 gene expression during cell differentiation. This demonstrates a novel role for Blimp-1 in the regulation of an NLR gene
The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66002/1/j.1471-4159.2008.05230.x.pd
Ex vivo Inhibition of NF-κB Signaling in Alloreactive T-cells Prevents Graft-Versus-Host Disease
The ex vivo induction of alloantigen-specific hyporesponsiveness by costimulatory pathway blockade or exposure to immunoregulatory cytokines has been shown to inhibit proliferation, IL-2 production, and the GVHD capacity of adoptively transferred T-cells. We hypothesized that inhibition of the intracellular NF-κB pathway in alloreactive T-cells, which is critical for T cell activation events including IL-2 transcription, could lead to alloantigen hyporesponsiveness and loss of GVHD capacity. We demonstrate that treatment of mixed lymphocyte reaction (MLR) cultures with PS1145, a potent inhibitor of NF-κB activation, can induce T cell hyporesponsiveness to alloantigen in primary and secondary responses while preserving in vitro responses to potent mitogenic stimulation. GVHD lethality in recipients of ex vivo PS1145-treated cells was profoundly inhibited. Parking of control- or PS1145- treated MLR cells in syngeneic Rag−/− recipients resulted in intact contact hypersensitivity responses. However, GVHD lethality capacity also was restored, suggesting that lymphopenic expansion uncoupled alloantigen hyporesponsiveness. These results indicate that the NF-κB pathway is a critical regulator of alloresponses and provide a novel small molecule inhibitor based approach that is effective in preventing early post-transplant GVHD lethality but that also permits donor T cell responses to recover after a period of lymphopenic expansion
NF-κB/Rel-Mediated Regulation of the Neural Fate in Drosophila
Two distinct roles are described for Dorsal, Dif and Relish, the three NF-κB/Rel proteins of Drosophila, in the development of the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through binding sites for NF-κB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8, Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8 expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels serves to keep the neuro-epithelium constantly poised for neurogenesis
Transcriptional Activation of REST by Sp1 in Huntington's Disease Models
In Huntington's disease (HD), mutant huntingtin (mHtt) disrupts the normal transcriptional program of disease neurons by altering the function of several gene expression regulators such as Sp1. REST (Repressor Element-1 Silencing Transcription Factor), a key regulator of neuronal differentiation, is also aberrantly activated in HD by a mechanism that remains unclear. Here, we show that the level of REST mRNA is increased in HD mice and in NG108 cells differentiated into neuronal-like cells and expressing a toxic mHtt fragment. Using luciferase reporter gene assay, we delimited the REST promoter regions essential for mHtt-mediated REST upregulation and found that they contain Sp factor binding sites. We provide evidence that Sp1 and Sp3 bind REST promoter and interplay to fine-tune REST transcription. In undifferentiated NG108 cells, Sp1 and Sp3 have antagonistic effect, Sp1 acting as an activator and Sp3 as a repressor. Upon neuronal differentiation, we show that the amount and ratio of Sp1/Sp3 proteins decline, as does REST expression, and that the transcriptional role of Sp3 shifts toward a weak activator. Therefore, our results provide new molecular information to the transcriptional regulation of REST during neuronal differentiation. Importantly, specific knockdown of Sp1 abolishes REST upregulation in NG108 neuronal-like cells expressing mHtt. Our data together with earlier reports suggest that mHtt triggers a pathogenic cascade involving Sp1 activation, which leads to REST upregulation and repression of neuronal genes
- …