505 research outputs found

    Effect of Starting Angle on Isokinetic Torques

    Get PDF

    A new noninvasive method for the accurate and precise assessment of varicose vein diameters

    Get PDF
    The feasibility and reproducibility of a new ultrasonic method for the direct assessment of maximal varicose vein diameter (VVD) were evaluated. A study was also performed to demonstrate the capacity of the method to detect changes in venous diameter induced by a pharmacologic treatment. Patients with varicose vein disease were recruited. A method that allows the precise positioning of patient and transducer and performance of scans in a gel-bath was developed. Maximal VVD was recorded both in the standing and supine positions. The intraassay reproducibility was determined by replicate scans made within 15 minutes in both positions. The interobserver variability was assessed by comparing VVDs measured during the first phase baseline examination with those obtained during baseline examinations in the second phase of the study. The error in reproducibility of VVD determinations was 5.3% when diameters were evaluated in the standing position and 6.4% when assessed in the supine position. The intramethod agreement was high, with a bias between readings of 0.06 ±0.18 mm and of –0.02 ±0.19 mm, respectively, in standing and supine positions. Correlation coefficients were better than 0.99 in both positions. The method appears to be sensitive enough to detect small changes in VVDs induced by treatments. The proposed technique provides a tool of potential valid use in the detection and in vivo monitoring of VVD changes in patients with varicose vein disease. The method offers an innovative approach to obtain a quantitative assessment of varicose vein progression and of treatment effects, thus providing a basis for epidemiologic survey

    Normal endothelial function in carriers of the apolipoprotein A-IMilano mutant despite low HDL-cholesterol levels

    Get PDF
    Carriers of the apolipoprotein A-IMilano (apoA-IM) mutant show severe reductions in the plasma concentration of antiatherogenic HDL but do not present with preclinical atherosclerosis and premature CHD. Aim of the present study was to investigate endothelial function in A-IM carriers, since low HDL-C levels have been associated with features of endothelial dysfunction. Plasma concentrations of soluble cell adhesion molecules (sCAMs) and forearm arterial compliance (FAC) during reactive hyperemia were evaluated in 21 A-IM carriers, 21 healthy subjects with low HDL-C, and 42 controls. Low HDL-C subjects had significantly higher plasma sCAM levels than controls (sVCAM-1: 656.3\ub149.3 vs 502.6\ub125.5 ng/ml; sICAM-1: 335.6\ub121.5 vs 267.0\ub18.9 ng/ml; sE-selectin: 62.9\ub14.1 vs 47.9\ub13.0 ng/ml); on the contrary, no differences were detected between A-IM carriers (sVCAM-1: 550.6\ub132.1 ng/ml; sICAM-1: 309.8\ub126.9 ng/ml; sE-selectin: 52.3\ub14.3 ng/ml) and controls. Low HDL-C subjects had lower FAC than controls, while no differences were detected between A-IM carriers and controls. These results suggest that HDL from A-IM carriers may be more efficient than control HDL in modulating endothelial function. To test this hypothesis, plasma HDL were isolated from 6 A-IM carriers and 6 controls, and their ability to inhibit VCAM-1 expression and to induce eNOS was tested in cultured endothelial cells. A-IM HDL were two times more effective than control HDL in reducing TNFalpha-induced VCAM-1 expression; the inhibition occurred at a transcriptional level, as demonstrated by RT-PCR. In addition, cells exposed to A-IM HDL showed higher expression of eNOS than cells treated with control HDL. In conclusion, despite the very low HDL-C levels, A-IM carriers do not display features of endothelial dysfunction, such as the increase of circulating sCAM levels and the impairment of arterial compliance, probably because of a superior ability of A-IM HDL to protect the endothelium

    Ultra low threshold current THz quantum cascade lasers based on buried strip-waveguides

    Full text link
    THz quantum cascade lasers based on a novel buried cavity geometry are demonstrated by combining double-metal waveguides with proton implantation. Devices are realised with emission at 2.8 THz, displaying ultra low threshold currents of 19 mA at 4K in both pulsed and continuous wave operation. Thanks to the semiconductor material on both sides of the active region and to the narrow width of the top metal strip, the thermal properties of these devices have been greatly improved. A decrease of the thermal resistance by over a factor of two compared to standard ridge double-metal lasers of similar size has been measured.Comment: 10 pages, 3 figures. Submitted for publication to Applied Physiscs Letters (February 2005

    Quasi-static and propagating modes in three-dimensional THz circuits

    Get PDF
    We provide an analysis of the electromagnetic modes of three-dimensional metamaterial resonators in the THz frequency range. The fundamental resonance of the structures is fully described by an analytical circuit model, which not only reproduces the resonant frequencies but also the coupling of the metamaterial with an incident THz radiation. We also demonstrate the contribution of the propagation effects, and show how they can be reduced by design. In the optimized design, the electric field energy is lumped into ultra-subwavelength (λ/100) capacitors, where we insert a semiconductor absorber based on the collective electronic excitation in a two dimensional electron gas. The optimized electric field confinement is exhibited by the observation of the ultra-strong light-matter coupling regime, and opens many possible applications for these structures in detectors, modulators and sources of THz radiation

    Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy

    Get PDF
    AbstractX-linked adrenoleukodystrophy (X-ALD) is a hereditary disorder of peroxisomal metabolism biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) in different tissues and in biological fluids. The disease is clinically characterized by central and peripheral demyelination and adrenal insufficiency, which is closely related to the increased concentrations of these fatty acids. However, the mechanisms underlying the brain damage in X-ALD are poorly known. Considering that free radical generation is involved in various neurodegererative disorders, like Parkinson disease, multiple sclerosis and Alzheimer's disease, in the present study we evaluated various oxidative stress parameters, namely chemiluminescence, thiobarbituric acid reactive species (TBA-RS), total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR) in plasma of X-ALD patients, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes and fibroblasts from these patients. It was verified a significant increase of plasma chemiluminescence and TBA-RS, reflecting induction of lipid peroxidation, as well as a decrease of plasma TAR, indicating a deficient capacity to rapidly handle an increase of reactive species. We also observed a significant increase of erythrocytes GPx activity and of catalase and SOD activities in fibroblasts from the patients studied. It is therefore proposed that oxidative stress may be involved in pathophysiology of X-ALD

    Carotid artery intima-media thickness measured by ultrasonography in normal clinical practice correlates well with atherosclerosis risk factors

    Get PDF
    BACKGROUND AND PURPOSE: The intima-media thickness (IMT) of extracranial carotid arteries determined by B-mode ultrasound is a measurable index of the presence of atherosclerosis. The ultrasonographic scan protocol and the scan reading techniques used until now to measure IMT are, however, time consuming and require the participation of specialized research centers. In this study we present a cross-sectional study of 963 patients attending the Enrica Grossi Paoletti Center in Milan, Italy, with the aim of assessing whether ultrasonographic measurements of carotid artery in routine clinical practice can yield the same results as those obtained with quantitative methods used until now in clinical trials. METHODS: Maximum and mean maximum IMT of carotid arteries were assessed by B-mode ultrasound with the use of the electronic caliper of the machine in real time. RESULTS: The intraobserver and interobserver variability of IMT of carotid arteries performed with the electronic caliper in real time was similar to that of quantitative processing of frozen images (coefficients of variation of intraobserver and interobserver mean maximum IMT measurements were 4.2% and 7.3%, respectively). Carotid artery IMT thus measured correlated with most of the known atherosclerosis risk factors and discriminated between patients with and without previous history of cardiovascular events. IMT was linearly related to the total number of vascular risk factors both in the whole group and after stratification of patients into 3 age classes. CONCLUSIONS: These observations establish a strong correlation between B-mode imaging of carotid atherosclerosis evaluated in normal clinical practice and data provided by clinical trials and validate this simple reading technique as a means of identifying IMT as another possible risk factor in patients at high risk of vascular disease

    Ultra-Strong Light-Matter Coupling in Deeply Subwavelength THz LC Resonators

    Get PDF
    International audienceThe ultra-strong light-matter coupling regime has been demonstrated in a novel three-dimensional inductor-capacitor (LC) circuit resonator, embedding a semiconductor two-dimensional electron gas in the capacitive part. The fundamental resonance of the LC circuit interacts with the intersubband plasmon excitation of the electron gas at ω c = 3.3 THz with a normalized coupling strength 2℩ R /ω c = 0.27. Light matter interaction is driven by the quasi-static electric field in the capacitors, and takes place in a highly subwavelength effective volume V eff = 10 −6 λ 3 0. This enables the observation of the ultra-strong light-matter coupling with 2.4 × 10 3 electrons only. Notably, our fabrication protocol can be applied to the integration of a semiconductor region into arbitrary nano-engineered three dimensional meta-atoms. This circuit architecture can be considered the building block of metamaterials for ultra-low dark current detectors

    Reproducibility validation study comparing analog and digital imaging technologies for the measurement of intima-media thickness

    Get PDF
    New advances in B-mode imaging technologies have led to improved quality in the detection of minute changes in the surface of intima-media thickness (IMT) and plaques. The new digital systems, with increased numbers of imaging channels, multiple frequency probes, and increased microprocessing speeds, now generate images comparable to those of the analog predecessors. Can these digital systems have reproducibility comparable to that of a pure analog system? We compared the Biosound 2000II (analog) system with the Esaote AU4 (digital) system
    • 

    corecore