76 research outputs found

    Novel Silicon Photomultipliers suitable for Dual-Mirror Small-Sized Telescopes of the Cherenkov Telescope Array

    Get PDF
    Many of the characteristics of Silicon Photomultipliers (SiPMs), such as high Photon Detection Efficiency (PDE), are well matched to the requirements of the cameras of the Small-Sized Telescopes (SSTs) proposed for the Cherenkov Telescope Array. In fact, compared to a single mirror, the double mirror Schwarzschild Couder configuration provides a much better Point Spread Function over a large field of view. It allows better correction of aberrations at large off axis angles and facilitates the construction of compact telescopes. Moreover, the small plate scale of the dual-mirror SSTs allows the use of SiPM detectors despite their small pixel sizes. These sensors have two further advantages compared to the Photo Multipliers Tubes: the low cost and the possibility to observe in very high Night Sky Background (NSB) light level without any damage. However, one area in which SiPM performance has required improvement is Optical CrossTalk (OCT), where multiple avalanches are induced by a single impinging photon. OCT, coupled with the typical NSB rate of 25 MCnts/s per pixel during Cherenkov observations, can place severe constraints on the triggering capability of the cameras. This paper describes the performance of novel Low Voltage Reverse (LVR) 2nd and 3rd generation Multi Pixel Photon Counters manufactured by Hamamatsu Photonics. These are designed to have both enhanced PDE and reduced OCT. Two 7 x 7 mm2 S14520 LVR2 MPPCs with 75 um microcells are tested and compared with detectors of the same pixel size with 50 um microcells. A comparative analysis of a 3 x 3 mm2 S14520 LVR2 device and an S14520 LVR3 device is also carried out, demonstrating that the LVR3 gives better photon detection in the 240 380 nm wavelength range. Finally, the effect of an infrared filter on the OCT is analysed.Comment: 17 pages, 17 figures, 2 tables. Submit to NIM-A Jurna

    Urodynamic effects of oxybutynin and tolterodine in conscious and anesthetized rats under different cystometrographic conditions

    Get PDF
    BACKGROUND: Antimuscarinic agents are the most popular treatment for overactive bladder and their efficacy in man is well documented, producing decreased urinary frequency and an increase in bladder capacity. During cystometry in rats, however, the main effect reported after acute treatment with antimuscarinics is a decrease in peak micturition pressure together with little or no effect on bladder capacity. In the present experiments we studied the effects, in rats, of the two most widely used antimuscarinic drugs, namely oxybutynin and tolterodine, utilising several different cystometrographic conditions. The aim was to determine the experimental conditions required to reproduce the clinical pharmacological effects of antimuscarinic agents, as seen in humans, in particular their ability to increase bladder capacity. RESULTS: Intravenous or oral administration of tolterodine or oxybutynin in conscious rats utilized 1 day after catheter implantation and with saline infusion at constant rate of 0.1 ml/min, gave a dose-dependent decrease of micturition pressure (MP) with no significant change in bladder volume capacity (BVC). When the saline infusion rate into the bladder was decreased to 0.025 ml/min, the effect of oral oxybutynin was similar to that obtained with the higher infusion rate. Also, experiments were performed in rats in which bladders were infused with suramin (3 and 10 μM) in order to block the non-adrenergic, non-cholinergic component of bladder contraction. Under these conditions, oral administration of oxybutynin significantly reduced MP (as observed previously), but again BVC was not significantly changed. In conscious rats with bladders infused with diluted acetic acid, both tolterodine and oxybutynin administered at the same doses as in animals infused with saline, reduced MP, although the reduction appeared less marked, with no effect on BVC. In conscious rats utilized 5 days after catheter implantation, a situation where inflammation due to surgery is reduced, the effect of tolterodine (i.v.) and oxybutynin (p.o.) on MP was smaller and similar, respectively, to that observed in rats utilized 1 day after catheter implantation, but the increase of BVC was not statistically significant. In anesthetized rats, i.v. administration of oxybutynin again induced a significant decrease in MP, although it was of questionable relevance. Both BVC and threshold pressure were not significantly reduced. The number and amplitude of high frequency oscillations in MP were unmodified by treatment. Finally, in conscious obstructed rats, intravenous oxybutynin did not modify frequency and amplitude of non-voiding contractions or bladder capacity and micturition volume. CONCLUSION: Despite the different experimental conditions used, the only effect on cystometrographic parameters of oxybutynin and tolterodine in anesthetized and conscious rats was a decrease in MP, whereas BVC was hardly and non-significantly affected. Therefore, it is difficult to reproduce in rats the cystometrographic increase in BVC as observed in humans after chronic administration of antimuscarinic agents, whereas the acute effects seem more similar

    Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7γ

    Get PDF
    Mutations leading to aberrant cytoplasmic localization of nucleophosmin (NPM) are the most frequent genetic alteration in acute myelogenous leukemia (AML). NPM binds the Arf tumor suppressor and protects it from degradation. The AML-associated NPM mutant (NPMmut) also binds p19Arf but is unable to protect it from degradation, which suggests that inactivation of p19Arf contributes to leukemogenesis in AMLs. We report here that NPM regulates turnover of the c-Myc oncoprotein by acting on the F-box protein Fbw7γ, a component of the E3 ligase complex involved in the ubiquitination and proteasome degradation of c-Myc. NPM was required for nucleolar localization and stabilization of Fbw7γ. As a consequence, c-Myc was stabilized in cells lacking NPM. Expression of NPMmut also led to c-Myc stabilization because of its ability to interact with Fbw7γ and delocalize it to the cytoplasm, where it is degraded. Because Fbw7 induces degradation of other growth-promoting proteins, the NPM–Fbw7 interaction emerges as a central tumor suppressor mechanism in human cancer

    Spindle assembly checkpoint robustness requires Tpr-mediated regulation of Mad1/Mad2 proteostasis

    Get PDF
    Tpr is a conserved nuclear pore complex (NPC) protein implicated in the spindle assembly checkpoint (SAC) by an unknown mechanism. Here, we show that Tpr is required for normal SAC response by stabilizing Mad1 and Mad2 before mitosis. Tpr coimmunoprecipitated with Mad1 and Mad2 (hereafter designated as Tpr/Mad1/Mad2 or TM2 complex) during interphase and mitosis, and is required for Mad1–c-Mad2 recruitment to NPCs. Interestingly, Tpr was normally undetectable at kinetochores and dispensable for Mad1, but not for Mad2, kinetochore localization, which suggests that SAC robustness depends on Mad2 levels at kinetochores. Protein half-life measurements demonstrate that Tpr stabilizes Mad1 and Mad2, ensuring normal Mad1–c-Mad2 production in an mRNA- and kinetochore-independent manner. Overexpression of GFP-Mad2 restored normal SAC response and Mad2 kinetochore levels in Tpr-depleted cells. Mechanistically, we provide evidence that Tpr might spatially regulate SAC proteostasis through the SUMO-isopeptidases SENP1 and SENP2 at NPCs. Thus, Tpr is a kinetochore-independent, rate-limiting factor required to mount and sustain a robust SAC response

    Terutroban, a Thromboxane/Prostaglandin Endoperoxide Receptor Antagonist, Increases Survival in Stroke-Prone Rats by Preventing Systemic Inflammation and Endothelial Dysfunction: Comparison with Aspirin and Rosuvastatin

    Get PDF
    ABSTRACT This study investigated the efficacy of terutroban, a specific thromboxane/prostaglandin endoperoxide receptor antagonist, on stroke incidence in spontaneously hypertensive strokeprone rats (SHRSP). The effects of terutroban were compared with those of aspirin, another antiplatelet agent, and rosuvastatin, known to exert end-organ protection in SHRSP. Saltloaded male SHRSP were treated orally once a day with vehicle, terutroban (30 mg/kg/day), aspirin (60 mg/kg/day), or rosuvastatin (10 mg/kg/day). Compared with vehicle, and regardless of any effect on blood pressure or serum thromboxane B 2 levels, terutroban significantly increased survival (p Ͻ 0.001) as a consequence of a delayed brain lesion occurrence monitored by magnetic resonance imaging (p Ͻ 0.001), and a delayed increase of proteinuria (p Ͻ 0.001). Terutroban decreased cerebral mRNA transcription of interleukin-1␤, transforming growth factor-␤, and monocyte chemoattractant protein-1 after 6 weeks of dietary treatment. Terutroban also prevented the accumulation of urinary acute-phase proteins at high molecular weight, identified as markers of systemic inflammation, and assessed longitudinally by one-dimensional electrophoresis. Terutroban also has protective effects on the vasculature as suggested by the preservation of endothelial function and endothelial nitric-oxide synthase expression in isolated carotid arteries. These effects are similar to those obtained with rosuvastatin, and superior to those of aspirin. Terutroban increases survival in SHRSP by reducing systemic inflammation as well as preserving endothelial function. These data support clinical development of terutroban in the prevention of cerebrovascular and cardiovascular complications of atherothrombosis. Several clinical and experimental studies Spontaneously hypertensive stroke-prone rats (SHRSP) develop hypertension and proteinuria and die after the onset Article, publication date, and citation information can be found a

    The Molecular Assembly of Amyloid Aβ Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of β-sheet-rich peptide (Aβ) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. Aβ species are potent neurotoxins, however the molecular mechanism responsible for Aβ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of Aβ 1–40 and Aβ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that Aβ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as Aβ receptors in N2a cells, triggering a multi factorial toxicity

    A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis

    Get PDF
    The ERAP1 gene encodes an aminopeptidase involved in antigen processing. A functional polymorphism in the gene (rs30187, Arg528Lys) associates with susceptibility to ankylosying spondylitis (AS), whereas a SNP in the interacting ERAP2 gene increases susceptibility to another inflammatory autoimmune disorder, Crohn's disease (CD). We analysed rs30187 in 572 Italian patients with CD and in 517 subjects suffering from multiple sclerosis (MS); for each cohort, an independent sex- and age-matched control group was genotyped. The frequency of the 528Arg allele was significantly higher in both disease cohorts compared to the respective control population (for CD, OR = 1.20 95%CI: 1.01–1.43, p = 0.036; for RRMS, OR = 1.26; 95%CI: 1.04–1.51, p = 0.01). Meta-analysis with the Wellcome Trust Cases Control Consortium GWAS data confirmed the association with MS (pmeta = 0.005), but not with CD. In AS, the rs30187 variant has a predisposing effect only in an HLA-B27 allelic background. It remains to be evaluated whether interaction between ERAP1 and distinct HLA class I alleles also affects the predisposition to MS, and explains the failure to provide definitive evidence for a role of rs30187 in CD. Results herein support the emerging concept that a subset of master-regulatory genes underlay the pathogenesis of autoimmunity

    Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial

    Get PDF
    Background and purpose Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. Methods This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebulization (4 ml/day) on non-infusion days, followed by an additional 24 weeks off-treatment. The primary objective was to measure the effects of RNS60 treatment on selected biomarkers of inflammation and neurodegeneration in peripheral blood. Secondary objectives were to measure the effect of RNS60 on functional impairment (ALS Functional Rating Scale-Revised), a measure of self-sufficiency, respiratory function (forced vital capacity, FVC), quality of life (ALS Assessment Questionnaire-40, ALSAQ-40) and survival. Tolerability and safety were assessed. Results Seventy-four participants were assigned to RNS60 and 73 to placebo. Assessed biomarkers did not differ between arms. The mean rate of decline in FVC and the eating and drinking domain of ALSAQ-40 was slower in the RNS60 arm (FVC, difference 0.41 per week, standard error 0.16, p = 0.0101; ALSAQ-40, difference -0.19 per week, standard error 0.10, p = 0.0319). Adverse events were similar in the two arms. In a post hoc analysis, neurofilament light chain increased over time in bulbar onset placebo participants whilst remaining stable in those treated with RNS60. Conclusions The positive effects of RNS60 on selected measures of respiratory and bulbar function warrant further investigation
    corecore