130 research outputs found

    The IKKâ related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists

    Full text link
    The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogeneâ induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through siteâ specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGFâ receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulusâ selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knockâ in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFNâ β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1â mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.SynopsisTBK1, an IKKâ related kinase that drives interferon production as well cancer cell proliferation and survival, phosphorylates mTOR to activate mTORC1 in response to EGF and innate immune agonists, suggesting unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity and tumorigenesis.TBK1 interacts with mTORC1 and phosphorylates mTOR on S2159 to increase its catalytic activity.Cells lacking TBK1 or expressing a mTOR S2159A allele exhibit reduced mTORC1 signaling in response to EGFâ receptor and TLR3/4 activation.Primary macrophages derived from genome edited mTOR S2159A mice exhibit reduced mTORC1 signaling in response to TLR3/4 activation.Primary macrophages treated with rapamycin as well as those derived from mTORS2159A mice produce reduced levels of IFNâ β due to impaired nuclear translocation of the transcription factor IRF3.Innate immune kinase TBK1â dependent activation of mTORC1 occurs in response to pathogen recognition and EGF receptor activation and drives interferon production, thus highlighting the role of mTOR for innate immunity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/1/embj201696164.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/2/embj201696164.reviewer_comments.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/3/embj201696164_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/4/embj201696164-sup-0001-EVFigs.pd

    Glomerulocystic kidney disease

    Get PDF
    Glomerulocystic disease is a rare renal cystic disease with a long descriptive history. Findings from recent studies have significantly advanced the pathophysiological understanding of the disease processes leading to this peculiar phenotype. Many genetic syndromes associated with glomerulocystic disease have had their respective proteins localized to primary cilia or centrosomes. Transcriptional control of renal developmental pathways is dysregulated in obstructive diseases that also lead to glomerulocystic disease, emphasizing the importance of transcriptional choreography between renal development and renal cystic disease

    Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals

    Get PDF
    Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpkTg737) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca2+ primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca2+ derived from both extracellular and intracellular stores. This flow-induced Ca2+ signal was less robust in cilium-deficient monolayers. Flow-induced Ca2+ signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca2+. Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na+) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases

    Genomic Diversity in Two Related Plant Species with and without Sex Chromosomes - Silene latifolia and S. vulgaris

    Get PDF
    Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes

    Endoplasmic reticulum stress and cell death in mTORC1-overactive cells is induced by nelfinavir and enhanced by chloroquine

    Get PDF
    Inappropriate activation of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is common in cancer and has many cellular consequences including elevated endoplasmic reticulum (ER) stress. Cells employ autophagy as a critical compensatory survival mechanism during ER stress. This study utilised drug-induced ER stress through nelfinavir in order to examine ER stress tolerance in cell lines with hyper-active mTORC1 signalling. Our initial findings in wild type cells showed nelfinavir inhibited mTORC1 signalling and upregulated autophagy, as determined by decreased rpS6 and S6K1 phosphorylation, and SQTSM1 protein expression, respectively. Contrastingly, cells with hyper-active mTORC1 displayed basally elevated levels of ER stress which was greatly exaggerated following nelfinavir treatment, seen through increased CHOP mRNA and XBP1 splicing. To further enhance the effects of nelfinavir, we introduced chloroquine as an autophagy inhibitor. Combination of nelfinavir and chloroquine significantly increased ER stress and caused selective cell death in multiple cell line models with hyper-active mTORC1, whilst control cells with normalised mTORC1 signalling tolerated treatment. By comparing chloroquine to other autophagy inhibitors, we uncovered that selective toxicity invoked by chloroquine was independent of autophagy inhibition yet entrapment of chloroquine to acidified lysosomal/endosomal compartments was necessary for cytotoxicity. Our research demonstrates that combination of nelfinavir and chloroquine has therapeutic potential for treatment of mTORC1-driven tumours

    45S rDNA Regions Are Chromosome Fragile Sites Expressed as Gaps In Vitro on Metaphase Chromosomes of Root-Tip Meristematic Cells in Lolium spp

    Get PDF
    BACKGROUND: In humans, chromosome fragile sites are regions that are especially prone to forming non-staining gaps, constrictions or breaks in one or both of the chromatids on metaphase chromosomes either spontaneously or following partial inhibition of DNA synthesis and have been well identified. So far, no plant chromosome fragile sites similar to those in human chromosomes have been reported. METHODS AND RESULTS: During the course of cytological mapping of rDNA on ryegrass chromosomes, we found that the number of chromosomes plus chromosome fragments was often more than the expected 14 in most cells for Lolium perenne L. cv. Player by close cytological examination using a routine chromosome preparation procedure. Further fluorescent in situ hybridization (FISH) using 45S rDNA as a probe indicated that the root-tip cells having more than a 14-chromosome plus chromosome fragment count were a result of chromosome breakage or gap formation in vitro (referred to as chromosome lesions) at 45S rDNA sites, and 86% of the cells exhibited chromosome breaks or gaps and all occurred at the sites of 45S rDNA in Lolium perenne L. cv. Player, as well as in L. multiflorum Lam. cv. Top One. Chromatin depletion or decondensation occurred at various locations within the 45S rDNA regions, suggesting heterogeneity of lesions of 45S rDNA sites with respect to their position within the rDNA region. CONCLUSIONS: The chromosome lesions observed in this study are very similar cytologically to that of fragile sites observed in human chromosomes, and thus we conclude that the high frequency of chromosome lesions in vitro in Lolium species is the result of the expression of 45S rDNA fragile sites. Possible causes for the spontaneous expression of fragile sites and their potential biological significance are discussed
    corecore