4 research outputs found

    Periostin and cancer

    Get PDF
    Periostin is a secreted protein that shares a structural homology to the axon guidance protein fasciclin I (FAS1) in insects and was originally named as osteoblast-specific factor-2 (Osf2). Periostin is particularly highly homologus to Ăźig-h3, which promotes cell adhesion and spreading of fibroblasts. It has recently been reported that Periostin was frequently overexpressed in various types of human cancers. Although the detailed function of Periostin is still unclear, Periostin-integrin interaction through FAS1 domain is thought to be involved in tumor development. In addition, Periostin stimulates metastatic growth by promoting cancer cell survival, invasion and angiogenesis. Therefore, Periostin can be a useful marker to predict the behavior of cancer. This review summarizes the recent understanding of Periostin roles in tumor development and speculates on the usefulness of Periostin as a therapeutic and diagnostic target for cancer

    CEOT variants or entities: Time for a rethink? A case series with review of the literature

    Get PDF
    The first detailed description of calcifying epithelial odontogenic tumor (CEOT) are ascribed to Jens Pindborg, but this tumor was described some years previously. Subsequently, CEOT was included in the 1971 WHO classification of odontogenic tumors and a since then number of variants have been described, which have added confusion to the diagnostic criteria. We aimed to survey the literature on the variants of CEOT, in parallel with a review of our single institution experience of CEOTs. Cases identified were collated, including available clinical, radiological and histological information and then reviewed, taking into account changes in the understanding and classifications of odontogenic tumors since initial diagnosis. We identified 26 cases from 1975 to 2017 for which histological material was available. Of these, only 13 (50%) showed the “classic” histological appearance, whilst two cases were identified as recognized variants. In 11 cases, other diagnoses or a differential diagnosis were preferred, with no agreed diagnosis in four of these. The proliferation fraction (Ki67) in the 10 cases tested was 2.1% ± 0.18. These findings illustrate the diagnostic challenges in this group of tumors and highlight the gaps in knowledge. Techniques, such as EWSR1 gene cytogenetic analysis, may be helpful in cases with clear cells. However, in other areas of controversy, including the non-calcifying and Langerhans cell rich variants, further investigation, perhaps utilizing sequencing technologies may be needed to refine the classification. Owing to the relative rarity of these lesions it would be beneficial if future work could be pursued as an international collaboration

    Periostin: Novel diagnostic and therapeutic target for cancer

    No full text
    Periostin is a secreted protein that shares a structural homology to the axon guidance protein fasciclin I (FAS1) in insects and was originally named as osteoblast-specific factor-2 (Osf2). Periostin is particularly highly homologus to Ăźig-h3, which promotes cell adhesion and spreading of fibroblasts. It has recently been reported that Periostin was frequently overexpressed in various types of human cancers. Although the detailed function of Periostin is still unclear, Periostin-integrin interaction through FAS1 domain is thought to be involved in tumor development. In addition, Periostin stimulates metastatic growth by promoting cancer cell survival, invasion and angiogenesis. Therefore, Periostin can be a useful marker to predict the behavior of cancer. This review summarizes the recent understanding of Periostin roles in tumor development and speculates on the usefulness of Periostin as a therapeutic and diagnostic target for cancer

    CEOT variants or entities : time for a rethink? A case series with review of the literature

    No full text
    The first detailed description of calcifying epithelial odontogenic tumor (CEOT) are ascribed to Jens Pindborg, but this tumor was described some years previously. Subsequently, CEOT was included in the 1971 WHO classification of odontogenic tumors and a since then number of variants have been described, which have added confusion to the diagnostic criteria. We aimed to survey the literature on the variants of CEOT, in parallel with a review of our single institution experience of CEOTs. Cases identified were collated, including available clinical, radiological and histological information and then reviewed, taking into account changes in the understanding and classifications of odontogenic tumors since initial diagnosis. We identified 26 cases from 1975 to 2017 for which histological material was available. Of these, only 13 (50%) showed the “classic” histological appearance, whilst two cases were identified as recognized variants. In 11 cases, other diagnoses or a differential diagnosis were preferred, with no agreed diagnosis in four of these. The proliferation fraction (Ki67) in the 10 cases tested was 2.1% ± 0.18. These findings illustrate the diagnostic challenges in this group of tumors and highlight the gaps in knowledge. Techniques, such as EWSR1 gene cytogenetic analysis, may be helpful in cases with clear cells. However, in other areas of controversy, including the non-calcifying and Langerhans cell rich variants, further investigation, perhaps utilizing sequencing technologies may be needed to refine the classification. Owing to the relative rarity of these lesions it would be beneficial if future work could be pursued as an international collaboration.https://link.springer.com/journal/12105am2020Oral Pathology and Oral Biolog
    corecore