316 research outputs found

    Climate Change Impacts on the Water Resources and Vegetation Dynamics of a Forested Sardinian Basin through a Distributed Ecohydrological Model

    Get PDF
    Climate change is impacting Mediterranean basins, bringing warmer climate conditions. The Marganai forest is a natural forest protected under the European Site of Community Importance (Natura 2000), located in Sardinia, an island in the western Mediterranean basin, which is part of the Fluminimaggiore basin. Recent droughts have strained the forest ' s resilience. A long-term hydrological database collected from 1922 to 2021 shows that the Sardinian forested basin has been affected by climate change since the middle of the last century, associated with a decrease in winter precipitation and annual runoff, reduced by half in the last century, and an increase of similar to 1 degrees C in the mean annual air temperature. A simplified model that couples a hydrological model and a vegetation dynamics model for long-term ecohydrological predictions in water-limited basins is proposed. The model well predicted almost one century of runoff observations. Trees have suffered from the recent warmer climate conditions, with a tree leaf area index (LAI) decreasing systematically due to the air temperature and a vapor pressure deficit (VPD) rise at a rate of 0.1 hPa per decade. Future climate scenarios of the HadGEM2-AO climate model are predicting even warmer conditions in the Sardinian forested basin, with less annual precipitation and higher air temperatures and VPD. Using these climate scenarios, we predicted a further decrease in runoff and tree transpiration and LAI in the basin, with a reduction of tree LAI by half in the next century. Although the annual runoff decreases drastically in the worst scenarios (up to 26%), runoff extremes will increase in severity, outlining future scenarios that are drier and warmer but, at the same time, with an increased flood frequency. The future climate conditions undermine the forest's sustainability and need to be properly considered in water resources and forest management plans

    Experimental investigation of the mooring system of a wave energy converter in operating and extreme wave conditions

    Get PDF
    A proper design of the mooring systems for Wave Energy Converters (WECs) requires an accurate investigation of both operating and extreme wave conditions. A careful analysis of these systems is required to design a mooring configuration that ensures station keeping, reliability, maintainability, and low costs, without affecting the WEC dynamics. In this context, an experimental campaign on a 1:20 scaled prototype of the ISWEC (Inertial Sea Wave Energy Converter), focusing on the influence of the mooring layout on loads in extreme wave conditions, is presented and discussed. Two mooring configurations composed of multiple slack catenaries with sub-surface buoys, with or without clump-weights, have been designed and investigated experimentally. Tests in regular, irregular, and extreme waves for a moored model of the ISWEC device have been performed at the University of Naples Federico II. The aim is to identify a mooring solution that could guarantee both correct operation of the device and load carrying in extreme sea conditions. Pitch motion and loads in the rotational joint have been considered as indicators of the device hydrodynamic behavior and mooring configuration impact on the WEC

    Fast nonlinear Froude–Krylov force calculation for prismatic floating platforms: a wave energy conversion application case

    Get PDF
    Computationally fast and accurate mathematical models are essential for effective design, optimization, and control of wave energy converters. However, the energy-maximising control strategy, essential for reaching economic viability, inevitably leads to the violation of linearising assumptions, so the common linear models become unreliable and potentially unrealistic. Partially nonlinear models based on the computation of Froude–Krylov forces with respect to the instantaneous wetted surface are promising and popular alternatives, but they are still too slow when floaters of arbitrary complexity are considered; in fact, mesh-based spatial discretisation, required by such geometries, becomes the computational bottle-neck, leading to simulations 2 orders of magnitude slower than real-time, unaffordable for extensive iterative optimizations. This paper proposes an alternative analytical approach for the subset of prismatic floating platforms, common in the wave energy field, ensuring computations 2 orders of magnitude faster than real-time, hence 4 orders of magnitude faster than state-of-the-art mesh-based approaches. The nonlinear Froude–Krylov model is used to investigate the nonlinear hydrodynamics of the floater of a pitching wave energy converter, extracting energy either from pitch or from an inertially coupled internal degree of freedom, especially highlighting the impact of state constraints, controlled/uncontrolled conditions, and impact on control parameters’ optimization, sensitivity and effectiveness

    Excitation forces estimation for non-linear wave energy converters: A neural network approach

    Get PDF
    Investigating optimal control algorithms is a continuing concern within the Wave Energy field. A considerable amount of literature has been published on optimal control architectures applied to Wave Energy Converter (WEC) devices. However, most of them requires the knowledge of the wave excitation forces acting on the WEC body. In practice such forces are unknown and an estimate must be used. In this work a methodology to estimate the wave excitation forces of a non-linear WEC along with the achievable accuracy, is discussed. A feedforward Neural Network (NN) is applied to address the estimation problem. Such a method aims to map the WEC dynamics to the wave excitation forces by training the network through a supervised learning algorithm. The most challenging aspects of these techniques are the ability of the network to estimate data not considered in the training process and their accuracy in presence of model uncertanities. Numerical simulations under different irregular sea conditions demonstrate accurate estimation results of the NN approach as well as a small sensitivity to changes in the plant parameters relative to the case study presented

    Data-based control synthesis and performance assessment for moored wave energy conversion systems: the PeWEC case

    Get PDF
    With a model-based control strategy, the effectiveness of the associated control action depends on the availability of a representative control-oriented model. In the case of floating offshore wave energy converters (WECs), the device response depends upon the interaction between mooring system, any mechanical parts, and the hydrodynamics of the floating body. This study proposes an approach to synthesise WEC controllers under the effect of mooring forces building a representative data-based linear model able to include any relevant dynamics. Moreover, the procedure is tested on the moored pendulum wave energy converter (PeWEC) by means of a high-fidelity mooring solver, OrcaFlex (OF). In particular, the control action is computed with and without knowledge of the mooring influence, in order to analyse and elucidate the effect of the station-keeping system on the harvested energy. The performance assessment of the device is achieved by evaluating device power on the resource scatter characterising Pantelleria, Italy. The results show the relevance of the mooring dynamics on the device response and final set of control parameters and, hence, a significant influence of the station-keeping system on control synthesis and extracted mechanical power

    Real-time wave excitation forces estimation: An application on the ISWEC device

    Get PDF
    Optimal control strategies represent a widespread solution to increase the extracted energy of a Wave Energy Converter (WEC). The aim is to bring the WEC into resonance enhancing the produced power without compromising its reliability and durability. Most of the control algorithms proposed in literature require for the knowledge of the Wave Excitation Force (WEF) generated from the incoming wave field. In practice, WEFs are unknown, and an estimate must be used. This paper investigates the WEF estimation of a non-linear WEC. A model-based and a model-free approach are proposed. First, a Kalman Filter (KF) is implemented considering the WEC linear model and the WEF modelled as an unknown state to be estimated. Second, a feedforward Neural Network (NN) is applied to map the WEC dynamics to the WEF by training the network through a supervised learning algorithm. Both methods are tested for a wide range of irregular sea-states showing promising results in terms of estimation accuracy. Sensitivity and robustness analyses are performed to investigate the estimation error in presence of un-modelled phenomena, model errors and measurement noise

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    The time in science: An interdisciplinary laboratorial approach

    Get PDF
    In order to promote problem-based and active learning in the physics laboratory, we designed a flipped classroom focused on the Franck-Hertz experiment. The flipped classroom approach moves course content from the classroom to homework and uses class time for engaging activities and problem solving. This constructivist approach to teaching is an effective means of student-centred collaboration and it can promote active learning, enhance critical thinking and obtain the maximum use of student-faculty time together. We report preliminary results of the flipped classroom approach to a laboratory and how it worked in the context of a small group of students in a physics course. © Published under licence by IOP Publishing Ltd
    • …
    corecore