21 research outputs found
An EMG-based eating behaviour monitoring system with haptic feedback to promote mindful eating
Mindless eating, or the lack of awareness of the food we are consuming, has been linked to health problems attributed to unhealthy eating behaviour, including obesity. Traditional approaches used to moderate eating behaviour often rely on inaccurate self-logging, manual observations or bulky equipment. Overall, there is a need for an intelligent and lightweight system which can automatically monitor eating behaviour and provide feedback. In this paper, we investigate: i) the development of an automated system for detecting eating behaviour using wearable Electromyography (EMG) sensors, and ii) the application of such a system in combination with real time wristband haptic feedback to facilitate mindful eating. Data collected from 16 participants were used to develop an algorithm for detecting chewing and swallowing. We extracted 18 features from EMG and presented those features to different classifiers. We demonstrated that eating behaviour can be automatically assessed accurately using the EMG-extracted features and a Support Vector Machine (SVM): F1-Score=0.94 for chewing classification, and F1-Score=0.86 for swallowing classification. Based on this algorithm, we developed a system to enable participants to self-moderate their chewing behaviour using haptic feedback. An experiment study was carried out with 20 additional participants showing that participants exhibited a lower rate of chewing when haptic feedback delivered in forms of wristband vibration was used compared to a baseline and non-haptic condition (F (2,38)=58.243, p<0.001). These findings may have major implications for research in eating behaviour, providing key new insights into the impacts of automatic chewing detection and haptic feedback systems on moderating eating behaviour with the aim to improve health outcomes
Believing Is Seeing: A Proof-of-Concept Semiexperimental Study on Using Mobile Virtual Reality to Boost the Effects of Interpretation Bias Modification for Anxiety
Background: Cognitive Bias Modification of Interpretations (CBM-I) is a computerized intervention designed to change negatively biased interpretations of ambiguous information, which underlie and reinforce anxiety. The repetitive and monotonous features of CBM-I can negatively impact training adherence and learning processes.
Objective: This proof-of-concept study aimed to examine whether performing a CBM-I training using mobile virtual reality technology (virtual reality Cognitive Bias Modification of Interpretations [VR-CBM-I]) improves training experience and effectiveness.
Methods: A total of 42 students high in trait anxiety completed 1 session of either VR-CBM-I or standard CBM-I training for performance anxiety. Participants’ feelings of immersion and presence, emotional reactivity to a stressor, and changes in interpretation bias and state anxiety, were assessed.
Results: The VR-CBM-I resulted in greater feelings of presence (P<.001, d=1.47) and immersion (P<.001, ηp2=0.74) in the training scenarios and outperformed the standard training in effects on state anxiety (P<.001, ηp2=0.3) and emotional reactivity to a stressor (P=.03, ηp2=0.12). Both training varieties successfully increased the endorsement of positive interpretations (P<.001, drepeated measures [drm]=0.79) and decreased negative ones. (P<.001, drm=0.72). In addition, changes in the emotional outcomes were correlated with greater feelings of immersion and presence.
Conclusions: This study provided first evidence that (1) the putative working principles underlying CBM-I trainings can be translated into a virtual environment and (2) virtual reality holds promise as a tool to boost the effects of CMB-I training for highly anxious individuals while increasing users’ experience with the training application
Investigating the use of sensor-based IoET to facilitate learning for children in rural Thailand
A novel sensor-based Internet of Educational Things (IoET) platform named OBSY was iteratively designed, developed and evaluated to support education in rural regions in Thailand. To assess the effectiveness of this platform, a study was carried out at four primary schools located near the Thai northern border with 244 students and 8 teachers. Participants were asked to carry out three science-based learning activities and were measured for improvements in learning outcome and learning engagement. Overall, the results showed that students in the IoET group who had used OBSY to learn showed significantly higher learning outcome and had better learning engagement than those in the control condition. In addition, for those in the IoET group, there was no significant effect regarding gender, home location (Urban or Rural), age, prior experience with technology and ethnicity on learning outcome. For learning engagement, only age was found to influence interest/enjoyment. The study demonstrated the potential of IoET technologies in underprivileged area, through a co-design approach with teachers and students, taking into account the local contexts
Recommended from our members
An EMG-based eating behaviour monitoring system with haptic feedback to promote mindful eating
Mindless eating, or the lack of awareness of the food we are consuming, has been linked to health problems attributed to unhealthy eating behaviour, including obesity. Traditional approaches used to moderate eating behaviour often rely on inaccurate self-logging, manual observations or bulky equipment. Overall, there is a clear unmet clinical need to develop an intelligent and lightweight system which can automatically monitor eating behaviour and provide feedback. In this paper, we investigate: i) the development of an automated system for detecting eating behaviour using wearable Electromyography (EMG) sensors, and ii) the application of the proposed system combined with real-time wristband haptic feedback to facilitate mindful eating. For this, the collected data from 16 participants were used to develop an algorithm for detecting chewing and swallowing. We extracted 18 features from EMG which were presented to different classifiers, to develop a system enabling participants to self-moderate their chewing behaviour using haptic feedback. An additional experimental study was conducted with 20 further participants to evaluate the effectiveness of eating monitoring and haptic interface in promoting mindful eating. We used a standard validation scheme with a leave-one-participant-out to assess model performance using standard metrics (F1-score). The proposed algorithm automatically assessed eating behaviour accurately using the EMG-extracted features and a Support Vector Machine (SVM): F1-Score=0.95 for chewing classification, and F1-Score=0.87 for swallowing classification. The experimental study showed that participants exhibited a lower rate of chewing when haptic feedback was delivered in the form of wristband vibration, compared to a baseline and non-haptic condition (F (2,38) = 58.243, p <.001). These findings may have major implications for research in eating behaviour, providing key insights into the impact of automatic chewing detection and haptic feedback systems on moderating eating behaviour towards improving health outcomes
Recommended from our members
Mindtalker: navigating the complexities of AI-enhanced social engagement for people with early-stage dementia
Game Design in Mental Health Care: Case Study–Based Framework for Integrating Game Design Into Therapeutic Content
While there has been increasing interest in the use of gamification in mental health care, there is a lack of design knowledge on how elements from games could be integrated into existing therapeutic treatment activities in a manner that is balanced and effective. To help address this issue, we propose a design process framework to support the development of mental health gamification. Based on the concept of experienced game versus therapy worlds, we highlight 4 different therapeutic components that could be gamified to increase user engagement. By means of a Dual-Loop model, designers can balance the therapeutic and game design components and design the core elements of a mental health care gamification. To support the proposed framework, 4 cases of game design in mental health care (eg, therapeutic protocols for addiction, anxiety, and low self-esteem) are presented