125 research outputs found

    The effects of bradykinin and angiotensin II on the thoracic aorta vasa sasorum microcirculation system

    Get PDF
    Vasa vasorum forms a network of microvessels within and around the walls of large blood vessels and is thought to be necessary to deliver oxygenated blood to the outer parts of the vessel wall that are inadequately nourished by diffusion from luminal blood. Vasa vasorum flow, therefore, may play an important role for aortic wall structure and function. Angiotensin II and bradykinin are two important vasoactive peptides, which produce vasoconstriction and vasodilatation, respectively. They can also change the permeability of microcirculation. In the present study, we documented the effect of different concentrations of ANG II and bradykinin on the vasa vasorum of isolated rabbit throcic aorta in vitro. Using a camera system, we observed changes in the number of leakages and diameter of vasa vasorum in response to perfusion of ANG II and BK, their antagonists (AT 2 receptor antagonist PD 123319, AT1 receptor antagonist EXP3174, B2 receptor antagonist HOE 140, B1 receptor antagonist (Leu9 ) Des Arg 10- KD (1 ?M), and nitric oxide synthase inhibitor L-NAME."--Résumé abrégé par UM

    Claudins in the Renal Collecting Duct

    Get PDF
    The renal collecting duct fine-tunes urinary composition, and thereby, coordinates key physiological processes, such as volume/blood pressure regulation, electrolyte-free water reabsorption, and acid-base homeostasis. The collecting duct epithelium is comprised of a tight epithelial barrier resulting in a strict separation of intraluminal urine and the interstitium. Tight junctions are key players in enforcing this barrier and in regulating paracellular transport of solutes across the epithelium. The features of tight junctions across different epithelia are strongly determined by their molecular composition. Claudins are particularly important structural components of tight junctions because they confer barrier and transport properties. In the collecting duct, a specific set of claudins (Cldn-3, Cldn-4, Cldn-7, Cldn-8) is expressed, and each of these claudins has been implicated in mediating aspects of the specific properties of its tight junction. The functional disruption of individual claudins or of the overall barrier function results in defects of blood pressure and water homeostasis. In this concise review, we provide an overview of the current knowledge on the role of the collecting duct epithelial barrier and of claudins in collecting duct function and pathophysiology

    Differential renal effects of candesartan at high-and ultra-high doses in diabetic mice: potential role of  ACE2/AT2R/Mas

    Get PDF
    High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin–angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate–high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate–high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes

    Evolving views on the first two ligands of the angiotensin II type 2 receptor. From putative antagonists to potential agonists?

    Get PDF
    The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.</p

    Angiotensin type-2 (AT-2)-receptor activation reduces renal fibrosis in cyclosporine nephropathy: evidence for blood-pressure independent effect

    Get PDF
    Compound 21 (C21), selective agonist of AT2 receptors, shows antinflammatory effects in hypertension and nephroprotection in diabetes. The aim of this study was to evaluate the effects of C21 in cyclosporine nephropathy, which is characterized mainly by tubulo-interstitial fibrosis. Ten days before and during the experimental periods, low-salt diet was administered to Sprague Dawley rats. Cyclosporine-A (15mg/kg/day, i.p.) and cyclosporine-A plus C21 (0.3 mg/kg /day, i.p) were administered for 1 and 4 weeks. Control groups was left without any treatment. Blood pressure (plethysmographic method) and 24 hour albuminuria were measured once a week. At the end of the experiments, the kidneys were excised for histomorphometric analysis of renal fibrosis and for immunohistochemical evaluation of inflammatory infiltrates and type I and IV collagen expression.After 1 and 4 weeks, the rats treated with cyclosporine showed a significant increase (p &lt;0.01) in blood pressure, no significant changes in albuminuria, a significant increase (p &lt;0.01) in glomerular and tubulo-interstitial fibrosis and inflammatory infiltrates as compared to the control rats. Treatment with C21 did not modify the cyclosporine dependent increase of blood pressure, which was higher than in control rats, but after 4 weeks of treatment significantly reduced (p &lt;0.01) glomerular and tubulo-interstitial fibrosis, type 1 collagen expression and macrophage infiltration, as compared to rats treated with cyclosporine.The administration of C21 showed a protective effect on cyclosporine nephropathy, decreasing renal fibrosis and macrophage infiltration. These data suggest that C21 may counteract tubulo-interstitial fibrosis, the most potent predictor of the progression of renal diseases

    Evolving views on the first two ligands of the angiotensin II type 2 receptor. From putative antagonists to potential agonists?

    Get PDF
    The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.</p

    Evolving views on the first two ligands of the angiotensin II type 2 receptor. From putative antagonists to potential agonists?

    Get PDF
    The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.</p

    Зміни показників діяльності нирок за умов поєднаного застосування флокаліну та еналаприлу

    Get PDF
    У дослідах на лабораторних нелінійних білих щурах вивчено зміни діяльності нирок після багаторазового (сім днів) уведення флокаліну (5 мг/кг, внутрішньошлунково) разом з еналаприлом (1 мг/кг, внутрішньоочеревинно). Встановлено, що після поєднаного застосування фторвмісного активатора аденозинтрифосфатзалежних калієвих каналів та інгібітора ангіотензинперетворювального ферменту підвищувалася швидкість клубочкової фільтрації, зростала екскреція білка без змін стандартизованого за клубочковим фільтратом показника протеїнурії, знижувався дистальний транстубулярний транспорт іонів натрію, збільшувався натрійурез, зберігався калієвий баланс організму
    corecore