43 research outputs found

    Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control

    No full text
    © 2020 The Author(s). Background: Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. Methods: We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. Results: In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P \u3c 0.0001). Conclusions: The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semi-field conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.[Figure not available: see fulltext.

    Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder

    Get PDF
    Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain

    Social stressors, arboviral infection, and immune dysregulation in the coastal lowland region of Ecuador : a mixed methods approach in ecological perspective

    Get PDF
    Funding: At the time this work was completed, Dr. Vega Ocasio was a trainee in the University of Rochester’s Translational Biomedical Science PhD Program, which is supported by Grant 2TL1TR002000-05 from the National Center for Advancing Translational Sciences, National Institutes of Health. Dr. Vega Ocasio was additionally supported by funds from BWF1014095 from the Burroughs Wellcome Fund. The surveillance study was supported by SUNY Upstate Medical University and Clinical Research Management (CRM).Aedes aegypti, the mosquito that transmits arboviral diseases such as dengue (DENV), chikungunya (CHIKV), and Zika viruses (ZIKV), is present in tropical and subtropical regions of the world. Individuals at risk of mosquito-borne disease (MBD) in the urban tropics face daily challenges linked to their socio-environment conditions, such as poor infrastructure, poverty, crowding, and limited access to adequate healthcare. These daily demands induce chronic stress events and dysregulated immune responses. We sought to investigate the role of socio-ecologic risk factors in distress symptoms and their impact on biological responses to MBD in Machala, Ecuador. Between 2017 and 2019, individuals (≥ 18 years) with suspected arbovirus illness (DENV, ZIKV, and CHIKV) from sentinel clinics were enrolled (index cases, N = 28). Cluster investigations of the index case households and people from four houses within a 200-m radius of index home (associate cases, N = 144) were conducted (total N = 172). Hair samples were collected to measure hair cortisol concentration (HCC) as a stress biomarker. Blood samples were collected to measure serum cytokines concentrations of IL-10, IL-8, TNF-α, and TGF-β. Univariate analyses were used to determine the association of socio-health metrics related to perceived stress scores (PSS), HCC, and immune responses. We found that housing conditions influence PSS and HCC levels in individuals at risk of MBD. Inflammatory cytokine distribution was associated with the restorative phase of immune responses in individuals with low-moderate HCC. These data suggest that cortisol may dampen pro-inflammatory responses and influence activation of the restorative phase of immune responses to arboviral infections.Publisher PDFPeer reviewe

    Neuronal calcium sensor-1 potentiates glucose-dependent exocytosis in pancreatic β cells through activation of phosphatidylinositol 4-kinase β

    No full text
    Cytosolic free Ca(2+) plays an important role in the molecular mechanisms leading to regulated insulin secretion by the pancreatic β cell. A number of Ca(2+)-binding proteins have been implicated in this process. Here, we define the role of the Ca(2+)-binding protein neuronal Ca(2+) sensor-1 (NCS-1) in insulin secretion. In pancreatic β cells, NCS-1 increases exocytosis by promoting the priming of secretory granules for release and increasing the number of granules residing in the readily releasable pool. The effect of NCS-1 on exocytosis is mediated through an increase in phosphatidylinositol (PI) 4-kinase β activity and the generation of phosphoinositides, specifically PI 4-phosphate and PI 4,5-bisphosphate. In turn, PI 4,5-bisphosphate controls exocytosis through the Ca(2+)-dependent activator protein for secretion present in β cells. Our results provide evidence for an essential role of phosphoinositide synthesis in the regulation of glucose-induced insulin secretion by the pancreatic β cell. We also demonstrate that NCS-1 and its downstream target, PI 4-kinase β, are critical players in this process by virtue of their capacity to regulate the release competence of the secretory granules
    corecore