70 research outputs found

    httk: R Package for High-Throughput Toxicokinetics

    Get PDF
    Thousands of chemicals have been profiled by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concentrations resulting from chemical exposure, and a "reverse dosimetry" approach can be used to predict exposure doses sufficient to cause tissue concentrations that have been identified as bioactive by high-throughput screening. We have created four toxicokinetic models within the R software package httk. These models are designed to be parameterized using high-throughput in vitro data (plasma protein binding and hepatic clearance), as well as structure-derived physicochemical properties and species-specific physiological data. The package contains tools for Monte Carlo sampling and reverse dosimetry along with functions for the analysis of concentration vs. time simulations. The package can currently use human in vitro data to make predictions for 553 chemicals in humans, rats, mice, dogs, and rabbits, including 94 pharmaceuticals and 415 ToxCast chemicals. For 67 of these chemicals, the package includes rat-specific in vitro data. This package is structured to be augmented with additional chemical data as they become available. Package httk enables the inclusion of toxicokinetics in the statistical analysis of chemicals undergoing high-throughput screening

    Cdc42 Regulates Extracellular Matrix Remodeling in Three Dimensions*

    Get PDF
    Extracellular matrix (ECM) actively participates in normal cell regulation and in the process of tumor progression. The Rho GTPase Cdc42 has been shown to regulate cell-ECM interaction in conventional two-dimensional culture conditions by using dominant mutants of Cdc42 in immortalized cell lines that may introduce nonspecific effects. Here, we employ three-dimensional culture systems for conditional gene targeted primary mouse embryonic fibroblasts that better simulate the reciprocal and adaptive interactions between cells and surrounding matrix to define the role of Cdc42 signaling pathways in ECM organization. Cdc42 deficiency leads to a defect in global cell-matrix interactions reflected by a decrease in collagen gel contraction. The defect is associated with an altered cell-matrix interaction that is evident by morphologic changes and reduced focal adhesion complex formation. The matrix defect is also associated with a reduction in synthesis and activation of matrix metalloproteinase 9 (MMP9) and altered fibronectin deposition patterning. A Cdc42 mutant rescue experiment found that downstream of Cdc42, p21-activated kinase (PAK), but not Par6 or WASP, may be involved in regulating collagen gel contraction and fibronectin organization. Thus, in addition to the previously implicated roles in intracellular regulation of actin organization, proliferation, and vesicle trafficking, Cdc42 is essential in ECM remodeling in three dimensions

    Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    Get PDF
    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease

    Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    Get PDF
    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available

    Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay

    Get PDF
    The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation

    Telling a Data Story: Longevity Follows Simplicity and Accessibility

    No full text
    Presentation for SOT on March 19-23, 2023 in Nashville, TN Science Inventory, CCTE products: https://cfpub.epa.gov/si/si_public_search_results.cfm?advSearch=true&showCriteria=2&keyword=CCTE&TIMSType=&TIMSSubTypeID=&epaNumber=&ombCat=Any&dateBeginPublishedPresented=07/01/2017&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&DEID=&personName=&personID=&role=Any&journalName=&journalID=&publisherName=&publisherID=&sortBy=pubDate&count=25</p

    Revolutionizing Toxicity Testing for Predicting Developmental Outcomes

    No full text
    Presented at the Fourth International Conference on Alternatives for<div>Developmental Neurotoxicity (DNT) Testing</div

    Beyond the Bench: What Skills are Needed for Next-Gen Developmental and Reproductive Toxicology?

    No full text
    Presented at the Teratology Society Annual Meeting<br

    Channel Interactions and Robust Inference for Ratiometric β‑Lactamase Assay Data: A Tox21 Library Analysis

    No full text
    Ratiometric β-lactamase (BLA) reporters are widely used to study transcriptional responses in a high-throughput screening (HTS) format. Typically, a ratio readout (background/target fluorescence) is used for toxicity assessment and structure–activity modeling efforts from BLA HTS data. This ratio readout may be confounded by channel-specific artifacts. To maximize the utility of BLA HTS data, we analyzed the relationship between individual channels and ratio readouts after fitting 10,000 chemical titration series screened in seven BLA stress–response assays from the Tox21 initiative. Similar to previous observations, we found that activity classifications based on BLA ratio readout alone are confounded by interference patterns for up to 85% (50% on average) of active chemicals. Most Tox21 analyses adjust for this issue by evaluating target and ratio readout direction. In addition, we found that the potency and efficacy estimates derived from the ratio readouts may not represent the target channel effects and thus complicates chemical activity comparison. From these analyses, we recommend a simpler approach using a direct evaluation of the target and background channels as well as the respective noise levels when using BLA data for toxicity assessment. This approach eliminates the channel interference issues and allows for straightforward chemical assessment and comparisons

    In Vitro and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme

    Get PDF
    A significant challenge in toxicology is the ‘too many chemicals’ problem. Human beings and environmental species are exposed to tens of thousands of chemicals, only a small percentage of which have been tested thoroughly using standard in vivo test methods. This study reviews several approaches that are being developed to deal with this problem by the U.S. Environmental Protection Agency, under the umbrella of the ToxCast programme (http://epa.gov/ncct/toxcast/). The overall approach is broken into seven tasks: (i) identifying biological pathways that, when perturbed, can lead to toxicity; (ii) developing highthroughput in vitro assays to test chemical perturbations of these pathways; (iii) identifying the universe of chemicals with likely human or ecological exposure; (iv) testing as many of these chemicals as possible in the relevant in vitro assays; (v) developing hazard models that take the results of these tests and identify chemicals as being potential toxicants; (vi) generating toxicokinetics data on these chemicals to predict the doses at which these hazard pathways would be activated; and (vii) developing exposure models to identify chemicals for which these hazardous dose levels could be achieved. This overall strategy is described and briefly illustrated with recent examples from the ToxCast programme
    corecore