73 research outputs found
Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements
We investigate the effect of using three different cross section data sets on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements (289&ndash;307 nm, 326&ndash;337 nm). These include Bass-Paur, Brion, and GOME flight model cross sections (references below). Using different cross sections can significantly affect the retrievals, by up to 12 Dobson Units (DU, 1 DU=2.69&times;10<sup>16</sup> molecules cm<sup>&minus;2</sup>) in total column ozone, up to 10 DU in tropospheric column ozone, and up to 100% in retrieved ozone values for individual atmospheric layers. Compared to using the Bass-Paur and GOME flight model cross sections, using the Brion cross sections not only reduces fitting residuals by 15&ndash;60% in the Huggins bands, but also improves retrievals, especially in the troposphere, as seen from validation against ozonesonde measurements. Therefore, we recommend using the Brion cross section for ozone profile retrievals from ultraviolet measurements. The total column ozone retrieved using the GOME flight model cross sections is systematically lower, by 7&ndash;10 DU, than that retrieved using the Brion and Bass-Paur cross sections and is also systematically lower than Total Ozone Mapping Spectrometer (TOMS) observations. This study demonstrates the need for improved ozone cross section measurements in the ultraviolet to improve profile retrievals of this key atmospheric constituent
Early and midterm results of frozen elephant trunk operation with Evita open stent-graft in patients with Marfan syndrome: results of a multicentre study
Background: Endovascular treatment of patients with Marfan syndrome (MFS) is not recommended. Hybrid procedures such as frozen elephant trunk (FET), which combines stent-graft deployment with an integrated non-stented fabric graft for proximal grafting and suturing, have not been previously evaluated. The aim of this study was to assess the safety and feasibility of FET operation in patients with MFS. Methods: Patients enrolled in the International E-vita Open Registry (IEOR) who underwent FET procedure between January 2001 and February 2020 meeting Ghent criteria for MFS were included in the study. Early and midterm results were retrospectively analyzed. Preoperative, postoperative and follow-up computed tomography angiography scans were analysed. Results: We analyzed 37 patients [mean age 38 ± 11 years, 65% men]. Acute or chronic aortic dissection was present in 35 (95%) patients (14 and 21 patients respectively). Two (5%) patients had an aneurysm without dissection. Malperfusion syndrome was present in 4 patients. Twenty-nine (78%) patients had history of aortic surgical interventions. The 30-day and in-hospital mortality amounted to 8 and 14% respectively. False lumen exclusion was present in 73% in stented segment in last postoperative CT. The overall 5-year survival was 71% and freedom from reintervention downstream was 58% at 5 years. Of the nine patients who required reintervention for distal aortic disease, one patient died. Conclusions: FET operation for patients with MFS can be performed with acceptable mortality and morbidity. In long-term follow-up no reinterventions on the aortic arch were required. FET allows for easier second stage operations providing platform for surgical and endovascular reinterventions
New Measurements of the Motion of the Zodiacal Dust
Using the Wisconsin H-Alpha Mapper (WHAM), we have measured at high spectral
resolution and high signal-to-noise the profile of the scattered solar Mg I
5184 absorption line in the zodiacal light. The observations were carried out
toward 49 directions that sampled the ecliptic equator from solar elongations
of 48\dg (evening sky) to 334\dg (morning sky) plus observations near +47\dg
and +90\dg ecliptic latitude. The spectra show a clear prograde kinematic
signature that is inconsistent with dust confined to the ecliptic plane and in
circular orbits influenced only by the sun's gravity. In particular, the
broadened widths of the profiles, together with large amplitude variations in
the centroid velocity with elongation angle, indicate that a significant
population of dust is on eccentric orbits. In addition, the wide, flat-bottomed
line profile toward the ecliptic pole indicates a broad distribution of orbital
inclinations extending up to about 30\dg - 40\dg with respect to the ecliptic
plane. The absence of pronounced asymmetries in the shape of the profiles
limits the retrograde population to less than 10% of the prograde population
and also places constraints on the scattering phase function of the particles.
These results do not show the radial outflow or evening--morning velocity
amplitude asymmetry reported in some earlier investigations. The reduction of
the spectra included the discovery and removal of extremely faint, unidentified
terrestrial emission lines that contaminate and distort the underlying Mg I
profile. This atmospheric emission is too weak to have been seen in earlier,
lower signal-to-noise observations, but it probably affected the line centroid
measurements of previous investigations.Comment: 24 pages, 8 figures, 1 table, to appear in ApJ v612; figures appear
low-res only on scree
Upper Tropospheric Water Vapour Variability at High Latitudes- Part 1: Influence of the Annular Modes
Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90°S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45% of the variability is explained by the AO at 6.5 ± -0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5-km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to \u3e 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km
A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective
This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone
Recommended from our members
Cubesats for monitoring atmospheric processes (CubeMAP): a constellation mission to study the middle atmosphere
Some aspects of the CubeMAP mission (also known as ESP-MACCS) are presented: its science objectives, and the primary choices made to address them from small satellite platforms. The science case, addressing some key scientific questions related to global change, is elaborated in four objectives focused on upper troposphere and stratospheric composition and its change. The sounding methodology and the associated observation concept retained is a constellation of miniature limb solar occultation thermal infrared sounders, offering the advantages of limb solar occultation, whilst mitigating the inherent lack of coverage of this geometry. The mission focuses on tropical regions as the gateway to the upper troposphere, and the stratosphere. The miniaturized instrument payloads developed for the mission are briefly presented: the High resolution InfraRed Occultation Spectrometer (HIROS) and the Hyperspectral Solar Disk Imager (HSDI). Lastly, the nanosatellite 12U platform and its subsystem are described, completing the overview of the mission space segment
Upper tropospheric water vapour variability at high latitudes – Part 1: Influence of the annular modes
Seasonal and monthly zonal medians of water vapour in the upper troposphere
and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry
Experiment (ACE) instruments for the northern and southern high-latitude
regions (60–90° N and 60–90° S). Chosen for the purpose
of observing high-latitude processes, the ACE orbit provides sampling of both
regions in 8 of 12Â months of the year, with coverage in all seasons. The ACE
water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in
the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier
Transform Spectrometer (ACE-FTS) are currently the only satellite instruments
that can probe from the lower stratosphere down to the mid-troposphere to
study the vertical profile of the response of UTLS water vapour to the
annular modes.
The Arctic oscillation (AO), also known as the northern annular mode (NAM),
explains 64 % (r = −0.80) of the monthly variability in water vapour at
northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using
only winter months (January to March, 2004–2013). Using a seasonal time step
and all seasons, 45 % of the variability is explained by the AO at
6.5 ± 0.5 km, similar to the 46 % value obtained for southern high
latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or
southern annular mode (SAM). A large negative AO event in March 2013 produced
the largest relative water vapour anomaly at 5.5 km (+70 %) over the
ACE record. A similarly large event in the 2010 boreal winter, which was the
largest negative AO event in the record (1950–2015), led to
> 50 % increases in water vapour observed by MAESTRO and
ACE-FTS at 7.5 km
Validation of water vapour profiles from the Atmospheric Chemistry Experiment (ACE)
International audienceThe Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Water vapour (H2O), one of the most important molecules for climate and atmospheric chemistry, is one of the key species provided by the two principal instruments, the infrared Fourier Transform Spectrometer (ACE-FTS) and the MAESTRO UV-Visible spectrometer (ACE-MAESTRO). The first instrument performs measurements on several lines in the 1362?2137 cm?1 range, from which vertically resolved H2O concentration profiles are retrieved, from 7 to 90 km altitude. ACE-MAESTRO measures profiles using the water absorption band in the near infrared part of the spectrum at 926.0?969.7 nm. This paper presents a comprehensive validation of the ACE-FTS profiles. We have compared the H2O volume mixing ratio profiles with space-borne (SAGE II, HALOE, POAM III, MIPAS, SMR) observations and measurements from balloon-borne frostpoint hygrometers and a ground based lidar. We show that the ACE-FTS measurements provide H2O profiles with small retrieval uncertainties in the stratosphere (better than 5% from 15 to 70 km, gradually increasing above). The situation is unclear in the upper troposphere, due mainly to the high variability of the water vapour volume mixing ratio in this region. A new water vapour data product from the ACE-MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is also presented and initial comparisons with ACE-FTS are discussed
SCIAMACHY Level 1 data: calibration concept and in-flight calibration
The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1) Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2) Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of on-ground and in-flight data is shortly described here. (3) Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues
SCIAMACHY Level 1 data: calibration concept and in-flight calibration
The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1) Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2) Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of onground and in-flight data is shortly described here. (3) Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues
- …