117 research outputs found
Masses and Properties of Extrasolar Planets.
Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018
RadVel: The Radial Velocity Modeling Toolkit
RadVel is an open source Python package for modeling Keplerian orbits in
radial velocity (RV) time series. RadVel provides a convenient framework to fit
RVs using maximum a posteriori optimization and to compute robust confidence
intervals by sampling the posterior probability density via Markov Chain Monte
Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors,
and perform Bayesian model comparison. We have implemented realtime MCMC
convergence tests to ensure adequate sampling of the posterior. RadVel can
output a number of publication-quality plots and tables. Users may interface
with RadVel through a convenient command-line interface or directly from
Python. The code is object-oriented and thus naturally extensible. We encourage
contributions from the community. Documentation is available at
http://radvel.readthedocs.io.Comment: prepared for resubmission to PAS
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT)
Kepler-1656b: a Dense Sub-Saturn With an Extreme Eccentricity
Kepler-1656b is a 5 planet with an orbital period of 32 days initially
detected by the prime Kepler mission. We obtained precision radial velocities
of Kepler-1656 with Keck/HIRES in order to confirm the planet and to
characterize its mass and orbital eccentricity. With a mass of ,
Kepler-1656b is more massive than most planets of comparable size. Its high
mass implies that a significant fraction, roughly 80%, of the planet's total
mass is in high density material such as rock/iron, with the remaining mass in
a low density H/He envelope. The planet also has a high eccentricity of , the largest measured eccentricity for any planet less than 100
. The planet's high density and high eccentricity may be the result of one
or more scattering and merger events during or after the dispersal of the
protoplanetary disk.Comment: 10 pages, 6 figures, published in The Astronomical Journa
Three Super-Earths Orbiting HD 7924
We report the discovery of two super-Earth mass planets orbiting the nearby
K0.5 dwarf HD 7924 which was previously known to host one small planet. The new
companions have masses of 7.9 and 6.4 M, and orbital periods of 15.3
and 24.5 days. We perform a joint analysis of high-precision radial velocity
data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to
robustly detect three total planets in the system. We refine the ephemeris of
the previously known planet using five years of new Keck data and high-cadence
observations over the last 1.3 years with the APF. With this new ephemeris, we
show that a previous transit search for the inner-most planet would have
covered 70% of the predicted ingress or egress times. Photometric data
collected over the last eight years using the Automated Photometric Telescope
shows no evidence for transits of any of the planets, which would be detectable
if the planets transit and their compositions are hydrogen-dominated. We detect
a long-period signal that we interpret as the stellar magnetic activity cycle
since it is strongly correlated with the Ca II H and K activity index. We also
detect two additional short-period signals that we attribute to
rotationally-modulated starspots and a one month alias. The high-cadence APF
data help to distinguish between the true orbital periods and aliases caused by
the window function of the Keck data. The planets orbiting HD 7924 are a local
example of the compact, multi-planet systems that the Kepler Mission found in
great abundance.Comment: Accepted to ApJ on 4/7/201
The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets
Probing the connection between a star's metallicity and the presence and
properties of any associated planets offers an observational link between
conditions during the epoch of planet formation and mature planetary systems.
We explore this connection by analyzing the metallicities of Kepler target
stars and the subset of stars found to host transiting planets. After
correcting for survey incompleteness, we measure planet occurrence: the number
of planets per 100 stars with a given metallicity . Planet occurrence
correlates with metallicity for some, but not all, planet sizes and orbital
periods. For warm super-Earths having days and , planet occurrence is nearly constant over metallicities spanning
0.4 dex to +0.4 dex. We find 20 warm super-Earths per 100 stars, regardless
of metallicity. In contrast, the occurrence of warm sub-Neptunes () doubles over that same metallicity interval, from 20 to 40
planets per 100 stars. We model the distribution of planets as , where characterizes the strength of any metallicity
correlation. This correlation steepens with decreasing orbital period and
increasing planet size. For warm super-Earths ,
while for hot Jupiters . High metallicities in
protoplanetary disks may increase the mass of the largest rocky cores or the
speed at which they are assembled, enhancing the production of planets larger
than 1.7 . The association between high metallicity and short-period
planets may reflect disk density profiles that facilitate the inward migration
of solids or higher rates of planet-planet scattering.Comment: 32 pages, 15 figures, 9 tables, accepted for publication in The
Astronomical Journa
Discovery of a White Dwarf Companion to HD 159062
We report on the discovery of a white dwarf companion to the nearby late G
dwarf star, HD 159062. The companion is detected in 14 years of precise radial
velocity (RV) data, and in high-resolution imaging observations. RVs of HD
159062 from 2003-2018 reveal an acceleration of ,
indicating that it hosts a companion with a long-period orbit. Subsequent
imaging observations with the ShaneAO system on the Lick Observatory 3-meter
Shane telescope, the PHARO AO system on the Palomar Observatory 5-meter
telescope, and the NIRC2 AO system at the Keck II 10-meter telescope reveal a
faint companion 2.7'' from the primary star. We performed relative photometry,
finding magnitudes,
magnitudes, and magnitudes for the companion from
these observations. Analysis of the radial velocities, astrometry, and
photometry reveals that the combined data set can only be reconciled for the
scenario where HD 159062 B is a white dwarf. A full Bayesian analysis of the RV
and imaging data to obtain the cooling age, mass, and orbital parameters of the
white dwarf indicates that the companion is an old white dwarf with an orbital period of years, and a cooling age of Gyr.Comment: 10 pages, 9 figure
Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications
Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans
The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets
The size of a planet is an observable property directly connected to the
physics of its formation and evolution. We used precise radius measurements
from the California-Kepler Survey (CKS) to study the size distribution of 2025
planets in fine detail. We detect a factor of 2 deficit
in the occurrence rate distribution at 1.5-2.0 R. This gap splits
the population of close-in ( < 100 d) small planets into two size regimes:
R < 1.5 R and R = 2.0-3.0 R, with few planets in
between. Planets in these two regimes have nearly the same intrinsic frequency
based on occurrence measurements that account for planet detection
efficiencies. The paucity of planets between 1.5 and 2.0 R supports
the emerging picture that close-in planets smaller than Neptune are composed of
rocky cores measuring 1.5 R or smaller with varying amounts of
low-density gas that determine their total sizes.Comment: Paper III in the California-Kepler Survey series, accepted to the
Astronomical Journa
Planet Candidates from K2 Campaigns 5-8 and Follow-Up Optical Spectroscopy
We present 151 planet candidates orbiting 141 stars from K2 campaigns 5-8
(C5-C8), identified through a systematic search of K2 photometry. In addition,
we identify 16 targets as likely eclipsing binaries, based on their light curve
morphology. We obtained follow-up optical spectra of 105/141 candidate host
stars and 8/16 eclipsing binaries to improve stellar properties and to identify
spectroscopic binaries. Importantly, spectroscopy enables measurements of host
star radii with 10% precision, compared to 40% precision when
only broadband photometry is available. The improved stellar radii enable
improved planet radii. Our curated catalog of planet candidates provides a
starting point for future efforts to confirm and characterize K2 discoveries.Comment: Accepted for publication in the Astronomical Journal; 17 pages, 8
figures, 2 tables, download source for full table
- …