445 research outputs found

    Genetic Map of Bacteriophage [var phi]X174

    Get PDF
    Bacteriophage [var phi]X174 temperature-sensitive and nonsense mutations in eight cistrons were mapped by using two-, three-, and four-factor genetic crosses. The genetic map is circular with a total length of 24 × 10−4wt recombinants per progeny phage. The cistron order is D-E-F-G-H-A-B-C. High negative interference is seen, consistent with a small closed circular deoxyribonucleic acid molecule as a genome

    Rings Reconcile Genotypic and Phenotypic Evolution within the Proteobacteria.

    Get PDF
    Although prokaryotes are usually classified using molecular phylogenies instead of phenotypes after the advent of gene sequencing, neither of these methods is satisfactory because the phenotypes cannot explain the molecular trees and the trees do not fit the phenotypes. This scientific crisis still exists and the profound disconnection between these two pillars of evolutionary biology--genotypes and phenotypes--grows larger. We use rings and a genomic form of goods thinking to resolve this conundrum (McInerney JO, Cummins C, Haggerty L. 2011. Goods thinking vs. tree thinking. Mobile Genet Elements. 1:304-308; Nelson-Sathi S, et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517:77-80). The Proteobacteria is the most speciose prokaryotic phylum known. It is an ideal phylogenetic model for reconstructing Earth's evolutionary history. It contains diverse free living, pathogenic, photosynthetic, sulfur metabolizing, and symbiotic species. Due to its large number of species (Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Nat Acad Sci U S A. 95:6578-6583) it was initially expected to provide strong phylogenetic support for a proteobacterial tree of life. But despite its many species, sequence-based tree analyses are unable to resolve its topology. Here we develop new rooted ring analyses and study proteobacterial evolution. Using protein family data and new genome-based outgroup rooting procedures, we reconstruct the complex evolutionary history of the proteobacterial rings (combinations of tree-like divergences and endosymbiotic-like convergences). We identify and map the origins of major gene flows within the rooted proteobacterial rings (P < 3.6 × 10(-6)) and find that the evolution of the "Alpha-," "Beta-," and "Gammaproteobacteria" is represented by a unique set of rings. Using new techniques presented here we also root these rings using outgroups. We also map the independent flows of genes involved in DNA-, RNA-, ATP-, and membrane- related processes within the Proteobacteria and thereby demonstrate that these large gene flows are consistent with endosymbioses (P < 3.6 × 10(-9)). Our analyses illustrate what it means to find that a gene is present, or absent, within a gene flow, and thereby clarify the origin of the apparent conflicts between genotypes and phenotypes. Here we identify the gene flows that introduced photosynthesis into the Alpha-, Beta-, and Gammaproteobacteria from the common ancestor of the Actinobacteria and the Firmicutes. Our results also explain why rooted rings, unlike trees, are consistent with the observed genotypic and phenotypic relationships observed among the various proteobacterial classes. We find that ring phylogenies can explain the genotypes and the phenotypes of biological processes within large and complex groups like the Proteobacteria

    Ultraviolet Absorption Spectra at Reduced Temperatures. I. Principles and Methods

    Get PDF
    Low temperature absorption and fluorescence spectra of solids, liquids, and solutions often reveal increased spectral detail of use in analytical procedures and molecular structure studies. Nevertheless, while qualitative observations of the influence of liquid air temperatures upon optical properties were undertaken very early, investigations of the absorption and fluorescence of organic compounds at the temperature of liquid nitrogen (-195.6°; 77.4 °K.) and below have appeared only sporadically. Because of the potential usefulness of the technique we have undertaken a systematic study of the low temperature spectra of substances of biochemical interest. The present paper discusses the methods employed; subsequent papers will deal with the experimental results. In this work, we have emphasized the wave-length location of absorption bands and the accurate determination of relative optical densities rather than precision in the determination of absolute optical densities, thus permitting the use of simpler methods than would otherwise be necessary

    Imaging Single-Stranded DNA, Antigen-Antibody Reaction and Polymerized Langmuir-Blodgett Films with an Atomic Force Microscope

    Get PDF
    The combination of an (AFM) atomic force microscope together with microfabricated cantilevers that have integrated tips opens many possibilities for imaging systems of great importance in biology. We have imaged single-stranded 25mer DNA that was adsorbed on treated mica or that was covalently bound with a crosslinker to a polymerized Langmuir-Blodgett (LB) film, the top monolayer of a bilayer system. At low magnification the AFM shows cracks between solid domains, like in an image taken with a fluorescence microscope. At higher magnification, however, the AFM reveals much finer cracks and at still higher magnification it reveals rows of individual molecules in the polymerized LB film with a spacing of 0.45 nm. We have also imaged a LB film consisting of lipids in which 4% of the lipids had hapten molecules chemically bound to the lipid headgroups. Specific antibodies can then bind to these hapten molecules and be imaged with the AFM. This points to the possibility of using the AFM to monitor selective antibody binding

    The ATF6-Met [67] Val substitution is associated with increased plasma cholesterol levels

    Get PDF
    Objective— Activating transcription factor 6 (ATF6) is a sensor of the endoplasmic reticulum stress response and regulates expression of several key lipogenic genes. We used a 2-stage design to investigate whether ATF6 polymorphisms are associated with lipids in subjects at increased risk for cardiovascular disease (CVD). Methods and Results— In stage 1, 13 tag-SNPs were tested for association in Dutch samples ascertained for familial combined hyperlipidemia (FCHL) or increased risk for CVD (CVR). In stage 2, we further investigated the SNP with the strongest association from stage 1, a Methionine/Valine substitution at amino-acid 67, in Finnish FCHL families and in subjects with CVR from METSIM, a Finnish population-based cohort. The combined analysis of both stages reached region-wide significance (P=9x10–4), but this association was not seen in the entire METSIM cohort. Our functional analysis demonstrated that Valine at position 67 augments ATF6 protein and its targets Grp78 and Grp94 as well as increases luciferase expression through Grp78 promoter. Conclusions— A common nonsynonymous variant in ATF6 increases ATF6 protein levels and is associated with cholesterol levels in subjects at increased risk for CVD, but this association was not seen in a population-based cohort. Further replication is needed to confirm the role of this variant in lipids. We report the association of the ATF6-methionine [67]valine amino-acid substitution with plasma cholesterol levels. Association analyses in 2674 subjects and functional data suggest that the ATF6 gene may influence cholesterol levels in subjects at increased risk to develop cardiovascular disease

    The genotoxicity of enantiomeric aliphatic epoxides

    Full text link
    The (R)- and (S)-optical isomers of 9 epoxides, benzyloxymethyloxirane, epichlorohydrin, glycidol, glycidyl 3-nitrobenzenesulfonate, glycidyl 4-nitrobenzoate, glycidyl tosylate, styrene oxide, glycidyl 1-naphthyl ether and glycidyl 4-nitrophenyl ether, have been compared for their in vivo and in vitro genotoxicity. The in vitro short-term test employed was the Ames mutagenicity assay with Salmonella strain TA100. The in vivo tests were chromosomal aberrations (CA) as well as sister-chromatid exchange (SCE) in bone-marrow cells of mice following intraperitoneal administration of these epoxides. Differences in mutagenicity between isomers were established with TA100 for all the compounds. While 13 of the isomers were genotoxic compared to a negative control by CA measurements, only in the case of glycidyl 4-nitrobenzoate could a significant difference be found between isomers by this test. However, with SCE evaluations, differences were detected between the (R)- and (S)-isomers for all the pairs of compounds with the exception of those for benzyloxymethyloxirane and glycidyl 4-nitrophenyl ether. At least in part, differences in the patterns of genotoxicity among compounds can be related to their differences in reaction pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31061/1/0000738.pd

    Advancing Alternative Analysis: Integration of Decision Science.

    Get PDF
    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts

    Bayesian modeling of recombination events in bacterial populations

    Get PDF
    Background: We consider the discovery of recombinant segments jointly with their origins within multilocus DNA sequences from bacteria representing heterogeneous populations of fairly closely related species. The currently available methods for recombination detection capable of probabilistic characterization of uncertainty have a limited applicability in practice as the number of strains in a data set increases. Results: We introduce a Bayesian spatial structural model representing the continuum of origins over sites within the observed sequences, including a probabilistic characterization of uncertainty related to the origin of any particular site. To enable a statistically accurate and practically feasible approach to the analysis of large-scale data sets representing a single genus, we have developed a novel software tool (BRAT, Bayesian Recombination Tracker) implementing the model and the corresponding learning algorithm, which is capable of identifying the posterior optimal structure and to estimate the marginal posterior probabilities of putative origins over the sites. Conclusion: A multitude of challenging simulation scenarios and an analysis of real data from seven housekeeping genes of 120 strains of genus Burkholderia are used to illustrate the possibilities offered by our approach. The software is freely available for download at URL http://web.abo.fi/fak/ mnf//mate/jc/software/brat.html
    • …
    corecore