562 research outputs found

    Sustainable Habitat Restoration: Fish, Farms, and Ecosystem Services

    Get PDF
    Biomass burning impacts biogeochemical cycling, vegetation dynamics and climate. However, interactions between fire, climate and vegetation are not well understood and therefore studies have attempted to reconstruct fire and vegetation history under different climatic conditions using sedimentary archives. Here we focus on levoglucosan, a thermal by-product of cellulose generated during biomass burning, and, therefore, a potential fire biomarker in the marine sedimentary archive. However, before levoglucosan can be applied as a biomass burning proxy in marine sediments, there is a need for studies on how levoglucosan is transported to the marine environment, how it is reflecting biomass burning on continents, as well as the fate of levoglucosan in the marine water column and during deposition in marine sediments. Here we present analyses of levoglucosan, using an improved Ultra High Pressure Liquid Chromatography-Electro Spray Ionization/High Resolution Mass Spectrometry (UHPLC-ESI/HRMS) method, in atmospheric particles, in particulate matter settling through the water column and in marine surface sediments on a longitudinal transect crossing the tropical North Atlantic Ocean at 12°N. Levoglucosan was detected in the atmosphere, although in low concentration, possibly due to the sampled particle size, the source area of the aerosols, or the short time interval of sampling by which large burning events may have been missed. In sinking particles in the tropical North Atlantic Ocean we find that levoglucosan deposition is influenced by a mineral ballast effect associated with marine biogenic particles, and that levoglucosan is not transported in association with mineral dust particles. Highest levoglucosan concentrations and seasonal differences in sinking particles were found close to continents and low concentrations and seasonal differences were found in the open ocean. Close to Africa, levoglucosan concentration is higher during winter, reflecting seasonal burning in northwestern Africa. However, close to South America levoglucosan concentrations appear to be affected by riverine transport from the Amazon River. In surface sediments close to South America, levoglucosan concentration is higher than in the middle of the Atlantic Ocean, implying that here the influence from the South American continent is important and perennial. Our study provides evidence that degradation of levoglucosan during settling in the marine water column is not substantial, but is substantial at the sediment–water interface. Nevertheless, levoglucosan was detected in all surface sediments throughout the tropical North Atlantic, indicating its presence in the marine sedimentary record, which reveals the potential for levoglucosan as a biomass burning proxy in marine sediments

    Constraints on the sources of branched tetraether membrane lipids in distal marine sediments

    Get PDF
    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'–CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset

    Different seasonality of pelagic and benthic Thaumarchaeota in the North Sea

    Get PDF
    We have examined the spatial and seasonal distribution of Thaumarchaeota in the water column and sediment of the southern North Sea using the specific intact polar lipid (IPL) hexose-phosphohexose (HPH) crenarchaeol, as well as thaumarchaeotal 16S rRNA gene abundances and expression. In the water column, a higher abundance of Thaumarchaeota was observed in the winter season than in the summer, which is in agreement with previous studies, but this was not the case in the sediment where Thaumarchaeota were most abundant in spring and summer. This observation corresponds well with the idea that ammonia availability is a key factor in thaumarchaeotal niche determination. In the surface waters of the southern North Sea, we observed a spatial variability in HPH crenarchaeol, thaumarchaeotal 16S rRNA gene abundance and transcriptional activity that corresponded well with the different water masses present. In bottom waters, a clear differentiation based on water masses was not observed; instead, we suggest that observed differences in thaumarchaeotal abundance with depth may be related to resuspension from the sediment. This could be due to suspension of benthic Thaumarchaeota to the water column or due to delivery of e.g. resuspended sediment or ammonium to the water column, which could be utilized by pelagic Thaumarchaeota. This study has shown that the seasonality of Thaumarchaeota in water and sediment is different and highlights the importance of water masses, currents and sedimentary processes in determining the spatial abundance of Thaumarchaeota in the southern North Sea

    A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin

    Get PDF
    In this study we have applied different indices based on long-chain diols, i.e., the long-chain diol index (LDI) as a proxy for past SST, the diol index as an indicator of past upwelling conditions, and the nutrient diol index (NDI) as a proxy for nitrate and phosphate concentrations in seawater. The proxies were analyzed in marine sediments recovered at ODP Site 1234, located within the Peru–Chile upwelling system, with a ∌2&thinsp;kyr resolution covering the last 150&thinsp;kyr. We also generated TEX86H and U37Kâ€Č temperature and planktonic ÎŽ18O records, as well as total organic carbon (TOC) and accumulation rates (ARs) of TOC and lipid biomarkers (i.e., C37 alkenones, GDGTs, dinosterol, and loliolide) to reconstruct past phytoplankton production. The LDI-derived SST record covaries with TEX86H- and U37Kâ€Č-derived SST records as well as with the planktonic ÎŽ18O record, implying that the LDI reflects past SST variations at this site. TOC and phytoplankton AR records indicate increased export production during the last interglacial (MIS 5), simultaneous with a peak in the abundance of preserved Chaetoceros diatoms, suggesting intensified upwelling during this period. The diol index is relatively low during the upwelling period, but peaks before and after this period, suggesting that Proboscia diatoms were more abundant before and after the period of upwelling. The NDI reveals the same trends as the diol index, suggesting that the input of nitrate and phosphate was minimal during upwelling, which is unrealistic. We suggest that the diol index and NDI should perhaps be considered as indicators for Proboscia productivity instead of upwelling conditions or nutrient concentrations.</p

    Isoprenoid and branched GDGT-based proxies for surface sediments from marine, fjord and lake environments in Chile

    Get PDF
    Proxies based on glycerol dialkyl glycerol tetraether (GDGT) lipids from archaea [isoprenoid GDGTs] and bacteria [branched (br) GDGTs] in 33 surface sediments from marine, fjord and lake systems between 25°S and 50°S in Chile were analyzed. The regional TEXH86 calibration obtained from the marine and fjord sediments and mean annual surface temperature (T = 59.6 × TEXH86 + 33.0; r2 0.9; n = 23) is statistically identical to the global ocean calibration based on suspended particulate material in terms of slope, but not in terms of intercept. The regional surface and subsurface TEXH86 calibrations were statistically different from the existing global ocean core top calibrations. The TEX86 calibration model based on most of the relatively large lakes studied here (T = 50.7 × TEX86 - 11.8; r2 0.9; n = 5) is statistically identical to the global lake calibration. The relatively high TEX86 values from smaller lakes suggested an additional source for isoprenoid GDGTs, likely terrestrial or aquatic methanogenic archaea. Application of the soil-calibrated MBT'/CBT (methylation and cyclization of br GDGTs, respectively) temperature proxy to the marine and fjord sediments resulted in an overestimation of continental mean annual air temperature (MAAT), suggesting in situ production of certain br GDGTs in the water column or surface sediment. For the lakes, MBT'/CBT-based surface air temperature estimates were 3–6 °C below MAAT. However, temperature estimates from the lake-specific MBT/CBT global calibration were in good agreement with mean annual surface temperature for all the lakes. The results highlight the need for testing local vs. global calibrations of GDGT-based proxies before their application for palaeoenvironmental reconstruction

    Spatial distribution of intact polar lipids in North Sea surface waters: Relationship with environmental conditions and microbial community composition

    Get PDF
    We characterized and quantified the intact polar lipid (IPL) composition of the surface waters of the North Sea and investigated its relationships with environmental conditions, microbial abundances, and community composition. The total IPL pool comprised at least 600 different IPL species in seven main classes: the glycerophospholipids phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE); the sulfur-bearing glycerolipid sulfoquinovosyldiacylglycerol (SQDG); and the nitrogen-bearing betaine lipids diacylglyceryl-trimethylhomoserine (DGTS), diacylglyceryl-hydroxymethyltrimethylalanine (DGTA), and diacylglyceryl-carboxy-hydroxymethylcholine (DGCC). Although no significant relationships were found between the IPL composition and environmental parameters, such as nutrient concentrations, distance-based ordination yielded distinct clusters of IPL species, which could in turn be tentatively correlated with the predominant microbial groups. SQDGs and PGs, as well as PC species containing saturated fatty acid moieties, were related to picoeukaryote abundances and PC species with polyunsaturated fatty acid (PUFA) moieties to nanoeukaryote abundances. The PEs were likely of mixed cyanobacterial-bacterial origin, whereas DGTA and DGCC species were mainly associated with cyanobacteria. DGTSs were likely derived from either pico-or nanoeukaryotes, although the DGTS species with PUFAs also showed some relationship with cyanobacterial abundances. Concentrations of the algal-derived IPLs showed strong positive correlations with chlorophyll a concentrations, indicating they may be used as biomarkers for living photosynthetic microbes. However, direct relationships between the IPLs and microbial groups were relatively weak, implying that the predominant IPLs in marine surface waters are not derived from single microbial groups and that direct inferences of microbial community compositions from IPL compositions should be considered with care

    A quest for the biological sources of long chain alkyl diols in the western tropical North Atlantic Ocean

    Get PDF
    Long chain alkyl diols (LCDs) are widespread in the marine water column and sediments, but their biological sources are mostly unknown. Here we combine lipid analyses with 18S rRNA gene amplicon sequencing on suspended particulate matter (SPM) collected in the photic zone of the western tropical North Atlantic Ocean at 24 stations to infer relationships between LCDs and potential LCD producers. The C30 1,15-diol was detected in all SPM samples and accounted for  &gt; 95&thinsp;% of the total LCDs, while minor proportions of C28 and C30 1,13-diols, C28 and C30 1,14-diols, as well as C32 1,15-diol were found. The concentration of the C30 and C32 diols was higher in the mixed layer of the water column compared to the deep chlorophyll maximum (DCM), whereas concentrations of C28 diols were comparable. Sequencing analyses revealed extremely low contributions ( ≈ 0.1&thinsp;% of the 18S rRNA gene reads) of known LCD producers, but the contributions from two taxonomic classes with which known producers are affiliated, i.e. Dictyochophyceae and Chrysophyceae, followed a trend similar to that of the concentrations of C30 and C32 diols. Statistical analyses indicated that the abundance of 4 operational taxonomic units (OTUs) of the Chrysophyceae and Dictyochophyceae, along with 23 OTUs falling into other phylogenetic groups, were weakly (r ≀ 0.6) but significantly (p value&thinsp; &lt; 0.01) correlated with C30 diol concentrations. It is not clear whether some of these OTUs might indeed correspond to C28−32 diol producers or whether these correlations are just indirect and the occurrence of C30 diols and specific OTUs in the same samples might be driven by other environmental conditions. Moreover, primer mismatches were unlikely, but cannot be excluded, and the variable number of rRNA gene copies within eukaryotes might have affected the analyses leading to LCD producers being undetected or undersampled. Furthermore, based on the average LCD content measured in cultivated LCD-producing algae, the detected concentrations of LCDs in SPM are too high to be explained by the abundances of the suspected LCD-producing OTUs. This is likely explained by the slower degradation of LCDs compared to DNA in the oxic water column and suggests that some of the LCDs found here were likely to be associated with suspended debris, while the DNA from the related LCD producers had been already fully degraded. This suggests that care should be taken in constraining biological sources of relatively stable biomarker lipids by quantitative comparisons of DNA and lipid abundances.</p

    Constraints on the applicability of the organic temperature proxies UK'37, TEX86 and LDI in the subpolar region around Iceland

    Get PDF
    The Supplement related to this article is available online at doi:10.5194/bg-12-6573-2015-supplement.Subpolar regions are key areas for studying natural climate variability due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37; TEX86; and the long-chain diol index, LDI) regarding their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long-chain alkyl diols were below the detection limit at most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes, i.e., high fluxes of alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) were measured during late spring and during summer and high fluxes of long-chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3 °C for UK'37) and positive (up to 5 °C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86-derived temperatures correspond with both annual and winter mean 0–200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols suggest that Proboscia diatoms are the major sources of long-chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.This work was supported by the Earth and Life Sciences Division of the Netherlands Organization for Scientific Research (NWO-ALW) by a grant (ALW 820.01.013) to J. S. Sinninghe DamstĂ©. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7/2007-2013) ERC grant agreement 226600

    First evidence for the Cenomanian-Turonian oceanic anoxic event (OAE2, Bonarelli event) from the Ionian Zone, western continental Greece

    Get PDF
    Integrated biostratigraphic (planktonic foraminifera, calcareous nannofossils), chemostratigraphic (bulk C and O isotopes) and compound-specific organic geochemical studies of a mid-Cretaceous pelagic carbonate—black shale succession of the Ionian Zone (western Greece), provide the first evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, ‘Bonarelli’ event) in mainland Greece. The event is manifested by the occurrence of a relatively thin (35 cm), yet exceptionally organic carbon-rich (44.5 wt% TOC), carbonate-free black shale, near the Cenomanian–Turonian boundary within the Vigla limestone formation (Berriasian–Turonian). Compared to the ‘Bonarelli’ black-shale interval from the type locality of OAE2 in Marche–Umbria, Italy, this black shale exhibits greatly reduced stratigraphic thickness, coupled with a considerable relative enrichment in TOC. Isotopically, enriched ή[superscript 13]C values for both bulk organic matter (−22.2‰) and specific organic compounds are up to 5‰ higher than those of underlying organic-rich strata of the Aptian-lower Albian Vigla Shale member, and thus compare very well with similar values of Cenomanian–Turonian black shale occurrences elsewhere. The relative predominance of bacterial hopanoids in the saturated, apolar lipid fraction of the OAE2 black shale of the Ionian Zone supports recent findings suggesting the abundance of N[subscript 2]-fixing cyanobacteria in Cretaceous oceans during the Cenomanian–Turonian and early Aptian oceanic anoxic events
    • 

    corecore