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ABSTRACT 

 

Proxies based on glycerol dialkyl glycerol tetraether (GDGT) lipids from archaea [isoprenoid 

GDGTs] and bacteria [branched GDGTs] in 33 surface sediments from marine, fjord and lake 

systems between 25°S and 50°S in Chile were analyzed. The regional TEXH
86 calibration 

obtained from the marine and fjord sediments and mean annual surface temperature (T = 59.6 

x TEXH
86 + 33.0; r2 0.9; n = 23) is statistically identical to the global ocean calibration based 

on suspended particulate material in terms of slope, but not in terms of intercept. The regional 

surface and subsurface TEXH
86 calibrations were statistically different from the existing 

global ocean core top calibrations. The TEX86 calibration model based on most of the 

relatively large lakes studied here (T = 50.7 x TEX86 – 11.8; r2 0.9; n = 5) is statistically 

identical to the global lake calibration. The relatively high TEX86 values from smaller lakes 

suggested an additional source for isoprenoid GDGTs, likely terrestrial or aquatic 

methanogenic archaea. Application of the soil-calibrated MBT’/CBT (methylation and 

cyclization of branched (br) GDGTs, respectively) temperature proxy to the marine and fjord 

sediments resulted in an overestimation of continental mean annual air temperature (MAAT), 

suggesting in situ production of certain br GDGTs in the water column or surface sediment. 

For the lakes, MBT’/CBT-based surface air temperature estimates were 3 to 6 °C below 

MAAT. However, temperature estimates from the lake-specific MBT/CBT global calibration 

were in good agreement with mean annual surface temperature for all the lakes. The results 

highlight the need for testing local vs. global calibrations of GDGT-based proxies before their 

application for palaeoenvironmental reconstruction. 
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1. Introduction 

 

Glycerol dialkyl glyceryl tetraethers (GDGTs) are membrane lipids of archaea and bacteria 

and occur ubiquitously in aquatic environments and soils (reviewed by Schouten et al., 2013). 

Thaumarchaeota (formerly Group 1 Crenarchaeota; Brochier-Armanet et al., 2008; Spang et 

al., 2010), a specific phylogenetic cluster of the Archaea domain occurring widely in marine 

and lake systems (e.g. Karner et al., 2001; Keough et al., 2003), biosynthesize isoprenoid (iso) 

GDGTs (structures in Appendix 1) containing 0-4 cyclopentane moieties and crenarchaeol, 

which has a cyclohexane moiety in addition to four cyclopentane moieties (Schouten et al., 

2000; Sinninghe Damsté et al., 2002; Pitcher et al., 2011a). Another group of GDGTs 

containing branched (br) instead of isoprenoid alkyl chains (Appendix 1) was initially 

discovered in peat bogs (Sinninghé Damsté et al., 2000) and subsequently shown to be 

ubiquitous in soils, coastal marine and lake sediments (e.g. Schouten et al., 2000; Hopmans et 

al., 2004; Weijers et al., 2006a, 2007a; Sinninghe Damsté et al., 2008; Huguet et al., 2010; 

Loomis et al., 2011). Acidobacteria thriving in soil are a likely source of brGDGTs (Weijers 

et al., 2006a, 2009; Sinninghé Damsté et al., 2011, 2014). Although brGDGTs occur mainly 

in soil and peat, they are probably also produced in situ in the water column and/or the 

sediments of marine and freshwater (lake and river) environments (e.g. Peterse et al., 2009; 

Sinninghe Damsté et al., 2009; Tierney and Russell, 2009; Tierney et al., 2010a; Pearson et 

al., 2011; Zhu et al., 2011; Loomis et al., 2011, 2012, 2014; Zell et al., 2013; Buckles et al., 

2014; De Jonge et al., 2014a; Weijers et al., 2014). 

 

Based on the two types of GDGTs, different indices have been developed as 

palaeoenvironmental proxies. The branched and isoprenoid tetraether (BIT) index uses the 

abundance of brGDGTs relative to crenarchaeol to estimate the input of soil-derived organic 

matter (OM) in sediments (e.g. Hopmans et al., 2004; Huguet et al., 2007; Walsh et al., 2008). 
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The TEX86 (tetraether index of GDGTs consisting of 86 carbon atoms) temperature proxy is 

based on the distribution of aquatic-derived isoGDGTs containing different numbers of 

cyclopentane moieties (Schouten et al., 2002). Mesocosm incubation studies have shown that 

the number of cyclopentane moieties in thaumarchaeotal GDGTs increases with growth 

temperature (Wuchter et al., 2004; Schouten et al., 2007). Global core top marine calibrations 

suggest that TEX86 correlates well with the annual mean temperature of the upper oceanic 

mixed layer (Kim et al., 2010; Tierney and Tingley, 2014) as well as with the 0-200 m 

temperature (Kim et al., 2008). Since it appeared that the relative abundance of the 

crenarchaeol regio-isomer (Appendix 1) is insensitive to temperature change in the polar 

oceans, a new index was introduced, TEXL
86, for application to low temperature (< 15 °C) 

settings, while TEXH
86  is more suitable for high temperature settings (> 15 °C; Kim et al., 

2010). However, observations suggest that the crenarchaeol regio-isomer (cren’), which is not 

considered for TEXL
86, is essential for SST prediction (Shah et al., 2008; Kim et al., 2010) 

and in certain polar regions does not perform better than TEX86 (Ho et al., 2014). Surveys of 

lakes indicate that TEX86 also correlates with lake surface (Powers et al., 2004, 2010; Blaga et 

al., 2009) and subsurface temperature (Blaga et al., 2011; Woltering et al., 2012). The 

relationship between sea/lake surface temperature and TEX86 may be masked when a large 

abundance of soil OM is present in marine or lake sediments, since soils also contain 

isoGDGTs (albeit in low abundance relative to brGDGTs; Weijers et al., 2006b). 

 

The distribution of brGDGTs is influenced by environmental factors such as pH, temperature 

and humidity. Weijers et al. (2007a) found that the relative number of cyclopentane moieties, 

expressed in the cyclization of branched tetraether (CBT) index, is related to soil pH, while 

the relative number of methyl branches, expressed in the methylation of branched tetraether 

(MBT) index, is related to both soil pH and mean surface air temperature. Combination of 

these two indices enables reconstruction of mean air temperature (MAT; Weijers et al., 2007). 
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Peterse et al. (2012) recently extended the soil dataset and proposed a slightly adjusted index, 

MBT’, using the most commonly occurring brGDGTs in soils. Application of the MBT/CBT 

index to lake sediments results in large underestimation of mean surface air temperature (e.g. 

Blaga et al., 2010; Tierney et al., 2010a; Zink et al., 2010), likely due to production of 

brGDGTs in the water column and/or the sediments (e.g. Sinninghe Damsté et al., 2009; 

Tierney and Russell, 2009; Buckles et al., 2014). A global calibration of MBT/CBT indices 

with lake surface temperature was established by Sun et al. (2011), while Tierney et al. 

(2010a) and Pearson et al. (2011) proposed multiple linear regressions based on the fractional 

abundances of the most dominant brGDGTs in lake sediments for calibration with mean 

annual surface temperature. Results based on MBT (MBT’) and CBT indices should be 

carefully considered as a recent study has shown that 6-methyl brGDGTs coelute with 5-

methyl brGDGTs (De Jonge et al., 2013), which has led to newly defined indices calibrated 

against pH and air temperature (De Jonge et al., 2014b). Separation of these isomers requires, 

however, a special analytical set-up for brGDGT analysis (De Jonge et al, 2013, 2014a,b). 

 

Although GDGT-based proxies are being used increasingly for palaeoclimate reconstruction 

(e.g. Tierney et al., 2008, 2010b; Lopes dos Santos et al., 2010; Tyler et al., 2010; Caley et al., 

2011; Peterse et al., 2011; Kabel et al., 2012; Kim et al., 2012a,b; Ménot and Bard, 2012; 

Blaga et al., 2013), they still require further validation and calibration for different 

environmental settings in order to constrain their local and regional applicability and 

accuracy, as shown by different studies based on soils (e.g. Peterse et al., 2012; Birkholz et 

al., 2013; De Jonge et al., 2013), marine environments (e.g. Kim et al., 2010; Ho et al., 2011, 

2014; Kabel et al., 2012; Tierney and Tingley, 2014) and lake settings (e.g. Blaga et al., 2010, 

2011; Huguet et al., 2010; Powers et al., 2010; Tierney et al., 2010a, 2012; Zink et al., 2010; 

Pearson et al., 2011; Sun et al., 2011; Loomis et al., 2012). While global calibrations indicate 

that genetic and/or physiological factors exert a relatively small effect on the relationship 
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between GDGT production and temperature, and are therefore applicable in most 

environments, regional and local calibrations, which incorporate the influence of e.g. 

seasonality, production depth and producers, can provide more accurate reconstruction for 

particular environments (e.g. Sinninghe Damsté et al., 2008; Tierney et al., 2010a; Zink et al., 

2010; Kabel et al., 2012; Kim et al., 2015), bearing in mind that these local factors might not 

have been the same in the past, recent attempts have been undertaken to accommodate this 

issue by way of the so-called BAYSPAR calibration, which provides local calibrations by 

considering only data points from a specific spatial grid into account (Tierney and Tingley, 

2014). However, data from the southeast Pacific and Chile are still scarce in the global 

calibrations of GDGT-based temperature proxies (e.g. Kim et al., 2008, 2010; Pearson et al., 

2011; Sun et al., 2011; Tierney and Tingley, 2014; Ho et al., 2014). Therefore, in this study, 

TEX86, TEX H
86, as well as the BIT, CBT, MBT and MBT’ indices were measured for 33 

surface sediments from marine, fjord and lake systems between 25°S and 55°S in Chile. 

Characterized by strong north-south temperature and rainfall gradients, resulting in drastically 

contrasting environments, Chile is a suitable region for testing the need for local vs. global 

calibrations of GDGT-based proxies. 

 

2. Setting 

 

Chile extends between 18°S and 56°S along the southeast Pacific Ocean (Fig. 1). The 

morphology of the southwestern South American continental margin is characterized by the 

Andean  Cordillera and a coastal range (Weischet, 1970). In southern Chile, the landscape is 

marked by the presence of the northern and southern Patagonian ice fields, between ca. 46°S 

and 51°S, and a characteristic fjord system. Often, the fjords are longer than 80 km, with 

water depth up to 1000 m below sea level (m.b.s.l) and are separated from the open ocean by 

shallow sills (up to 70 m.b.s.l.). The water column in the fjords is characterized by a two-layer 
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structure with a strong halocline, resulting from the substantial input of freshwater from rivers 

(Killian et al., 2007; Sievers, 2008; Silva, 2008). 

 

The Chilean climate is influenced by the presence of a subtropical high pressure cell in the 

north (around 27°S), associated with virtually no rainfall in northernmost Chile (Atacama 

Desert) and a low pressure belt around Antarctica (Cerveny, 1998). The resulting southern 

westerly winds centred around 45-50°S and the presence of the Andes causes extremely high 

amounts of precipitation exceeding 7 m/yr in the coastal area of southern Chile. From 

northern to southern Chile annual mean surface air temperature decreases from 14 to 4 °C 

(Fig. 1) and the mean seasonal amplitude (summer/winter) is ca. 6 °C. Offshore Chile, the 

westward-flowing Antarctic circumpolar current splits around 45°S into the southward 

flowing Cape Horn current and the equatorward flowing Peru-Chile Current (PCC; Strub et 

al., 1998; Chaigneau and Pizarro, 2005; Fig. 1). Driven by east/southeast winds, the PCC is at 

the origin of an upwelling system along the Chilean coast from ca. 41°S to the equator (Strub 

et al., 1998). Sea surface temperature (SST) ranges from ca. 20 °C at 18 °S to 7 °C around 

Cape Horn, with mean seasonal amplitude (summer/winter) ca. 4 °C. 

 

3. Material and methods 

 

The marine, fjord and lake surface sediments (0-1 cm sediment depth) are from an area 

between 25°S and 55°S (Fig. 1; Table  1). They were recovered during different expeditions: 

Mascardi lake (December 1993; Ariztegui et al., 1997), ProGlaLakes (January 1994; Chapron 

et al., 2006), R/V Sonne SO 102 (May-June 1995; Hebbeln et al., 1995), PALATRAS 

(October 1999; Gilli et al., 2005), R/V Sonne SO 156 (March-May 2001; Hebbeln et al., 

2001), Lagos Lanalhue and Lleu Lleu (September 2005), ENDS (March 2006; Waldmann et 

al., 2010), R/V Gran Campo II cruise in the Chilean Fjords (September 2006), R/V Marion 
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Dufresne MD 159 PACHIDERME  (February 2007) and R/V Gran Campo II expedition to 

lakes in the Magellanes region (October 2007). The marine sediments (n = 13) were obtained 

at sites between 25°S and 50°S with a water depth up to 1790 m.b.s.l. The fjord sediments (n 

= 10) were from sites between 41°S and 54°S at a depth between 40 and 655 m.b.s.l. The lake 

sediments (n = 10) originate from 6 Chilean lakes and 4 lakes in southern Argentina between 

37°S and 55°S at an elevation between 100 and 700 m.a.s.l. (Table 3). The sediments were 

taken with devices which kept the water-sediment interface undisturbed: multi-corer, short 

gravity corer and the CASQ gravity corer from the R/V Marion Dufresne. 

 

The total lipid extract (TLE) of the freeze-dried and ground sediment (2-10 g dry weight, dw) 

was obtained with an accelerated solvent extraction device (DIONEX ASE 200) using 

dichloromethane (DCM)/MeOH (9:1, v:v) at 100 °C and 1000 psi. After adding 1.0 µg of a 

C46 GDGT as internal standard (Huguet et al., 2006), the extract was separated over an Al2O3 

column (activated for 2 h at 150 °C) into an apolar, a ketone and a polar fraction using 

hexane:DCM (9:1 v/v), hexane:DCM (1:1 v/v) and DCM:MeOH (1:1 v/v), respectively. The 

polar fraction was analyzed for GDGTs as described by Hopmans et al. (2000) and Schouten 

et al. (2007). An aliquot was dissolved via sonication (5 min) in hexane:propanol (99:1, v/v) 

and filtered through a 0.45 µm PTFE filter. The sample was analyzed using high performance 

liquid chromatographyatmospheric pressure chemical ionization mass spectrometry (HPLC-

APCI-MS; Agilent 1100 series LC-MS instrument; HP 1100 APCI-MS instrument). 

Separation was achieved with a Prevail Cyano column (2.1 x 150 mm, 3 µm) maintained at 30 

°C. GDGTs were eluted isocratically with 99% hexane and 1% propanol for 5 min, followed 

by a linear gradient to 1.8% propanol in 45 min. Flow rate was 0.2 ml/min. Conditions for 

APCI-MS were: nebulizer 60 psi, vaporizer 400 °C, drying gas (N2) at 6 ml/min and 200°C, 

capillary voltage -3 kV, corona 5 µA (ca. 3.2 kV). The GDGTs were detected using single ion 

monitoring (SIM) of the [M+H]+ ions. Quantification was achieved using a relative response 
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factor value of 1.1 between a C46 GDGT standard and an isolated crenarchaeol standard (for 

details see Huguet et al., 2006). Note that in the present study 5- and 6-methyl brGDGTs were 

not fully separated with the method used (cf. De Jonge et al., 2013, 2014b). 

 

The GDGT-based indices (Table 2) were calculated following Hopmans et al. (2004) for the 

BIT index (Eq. 1; Table 2), Schouten et al. (2002) for TEX86 (Eq. 2; Table 2), Kim et al. 

(2010; Eq. 3; Table 2) for TEXH
86, Weijers et al. (2007a) for the MBT and CBT indices (Eq. 4 

and 5; Table 2) and Peterse et al. (2012) for the MBT’ index (Eq. 6; Table 2). As sea surface 

temperature (SST) data for the Chilean fjords are scarce, unpublished (punctual CTD - 

conductivity, temperature, depth - data taken during the above expeditions) and few published 

data from austral winter and spring (Gonzalez et al., 2010, 2011; Palma and Silva, 2004) were 

used, together with the World Ocean Atlas 2001 database (WOA; Conkright et al., 2002), 

which has a spatial coverage of 1° x 1° (lat./long.). Depth integrated annual mean 

temperatures from 0 to 200 m water depth were calculated from WOA following Kim et al. 

(2008). The WOA temperatures were chosen in the nearest degree in latitude and longitude to 

each surface sediment position. For surface air temperature, the high resolution (0.1° x 0.1° 

grid) World Water and Climate Atlas from the International Management Water Institute 

(IWMI) was used. The atlas is based on an interpolation (which includes elevation as co-

predictor) of data from weather stations around the world for 1961-1990 and provides 

monthly values (New et al., 2002; data available at the IWMI on-line climate summary 

service portal; http://www.iwmi.cgiar.org/). Mean annual lake surface temperature values 

were taken from the literature whenever possible (Ariztegui et al., 1997; Parra et al., 2003; 

Gilli et al., 2005; Pérez et al., 2007; Moy et al., 2011). As both mean annual air and lake 

surface temperature are similar to each other (Table 3), mean annual air temperature (MAAT) 

values were used for the lakes when surface water temperature values were not available. 
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Pearson correlation coefficient analysis and principal component analysis (PCA) were 

performed with the software PAST (PAleontological STatistics) version 3.04© (Hammer et 

al., 2001). PCA was performed to identify the dominant factors of the variance in the datasets. 

Prior to PCA analysis, the data were standardized using mean values and standard deviations 

to bring all of the variables into proportion with each another. To determine whether the 

slopes and intercepts of the regression lines were significantly different from each other, t-

tests were performed using the mean, slope, intercept, standard errors, sum of squared error 

and sample size for each dataset (Cohen et al., 2003; Wuensch, 2013). 

 

4. Results and discussion 

 

4.1. GDGT concentration and BIT index 

 

The concentration of isoGDGTs (GDGTs 0-3, crenarchaeol and its regio-isomer; Appendices 

1 and 2) ranged between 0.2 and 22.4 µg/g dw (mean 6.5 µg/g dw) in the marine sediments 

and between 4.3 and 15.7 µg/g dw (mean 7.4 µg/g dw) in the fjord sediments (Fig. 2A). The 

concentration of brGDGTs (summed concentrations of VIII + VII + VI; Appendices 1 and 2) 

ranged between 0.2 and 0.6 µg/g dw (mean 0.4 µg/g dw) in the fjord sediments and between 

0.02 and 0.4 µg/g dw (mean 0.1 µg/g dw) in the marine sediments. The concentration of 

brGDGTs was highest in the lake sediments, between 0.1 and 2.9 µg/g dw (mean 1.1 µg/g 

dw), while the mean concentration of isoGDGTs between 0.01 and 1.0 µg/g dw (mean 0.2 

µg/g dw) was lower than in the marine and fjord environments. 

 

The BIT index (Eq. 1; Table 2) for the marine sediments ranged between 0.02 and 0.06 (mean 

0.03; Fig. 2B), a common value for open marine settings (Schouten et al., 2013 and references 

therein). For the fjord sediments, values were between 0.04 and 0.08, on average  twofold 
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higher than for the marine sediments. A cross plot of brGDGT concentration and BIT (Fig. 

2B) suggests that elevated BIT values in fjord sediments are primarily related to the increase 

in concentration of brGDGTs, supporting the idea of an increasing contribution of soil OM 

towards the coastal area. Such a trend was also inferred on the baseis of the interpretation of 

C/N values from an offshore-inshore transect at ca. 43-47°S. C/N increased from ca. 6 in 

marine surface sediments (Hebbeln et al., 2000) to 10 and 16 in the outer and inner fjords, 

respectively (Sepulveda et al., 2011), reflecting an increased input of terrestrial OM, which is 

characterized by values ≥ 20 (e.g. Meyers, 1994 and references therein). The BIT index 

seems, therefore, to work well as a proxy for the relative input of soil OM to the marine and 

fjord environments off Chile. However, in situ production of certain brGDGTs cannot be 

excluded (Section 4.4.). 

 

The lake sediments had much higher BIT values than the marine and fjord sediments, with 

values between 0.30 and 0.99 (Fig. 2B), i.e. a common range for lake systems (Schouten et 

al., 2013 and references therein). In comparison with the other lakes, the sediments from 

Mascardi, Nahuel Huapi, Cardiel and Fagnano lakes (sediments 9, 10, 22, 33, respectively; 

Tables 1 and 3) had the lowest BIT values. This may be related to their relatively larger size 

(Table 3) and a higher in situ thaumarchaeotal productivity (Blaga et al., 2009; Powers et al., 

2010; Tierney et al., 2010a, 2012). Indeed, the concentration of crenarchaeol was higher in 

these lakes than in the other, smaller lakes, which were strongly dominated by brGDGTs (Fig. 

2C). There was however no correlation (r2 0.02; not shown) between BIT values and 

surface/catchment ratio for the different lakes, as would be expected if brGDGTs are 

predominantly derived from soils. This may indicate in situ production of certain brGDGTs in 

the lakes (Section 4.4.). 
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Using a simple two end member mixing model based on data from the Congo River fan, 

Weijers et al. (2006b) estimated that BIT index values > 0.3 may bias TEX86-based SST 

reconstruction by > 2 °C, because isoGDGTs are also present in soils, although in relatively 

low concentration. Here, TEX86-based SST estimates are unlikely to be biased for the marine 

and fjord sediments, as all BIT values were < 0.1 (Fig. 2B). The relatively high BIT values for 

the lake sediments indicate that TEX86-based lake surface temperature may be influenced by 

soil-derived input of isoGDGTs (cf. Blaga et al., 2009; Powers et al., 2010). However, since 

in recent years it has become clear that brGDGTs may also be produced in the water column 

and sediments of lakes (e.g. Sinninghe Damsté et al., 2009; Tierney and Russell, 2009; De 

Jonge et al., 2014a; Buckles et al., 2014), the BIT index is less reliable in assessing a 

significant input of soil material to lake systems. Therefore, we also tested the application of 

the TEX86 palaeothermometer to these lakes with BIT values > 0.3. 

 

4.2. TEX
H

86 and temperature in the marine and fjord sediments 

  

Results from water column studies off northern and central-southern Chile have shown that 

Thaumarchaeota are the dominant archaeal group in the Peru-Chile Current system and are 

predominantly abundant within the upper oxycline (10-100 m depth) of the O2 minimum zone 

(OMZ), where NH4
+ attains maximum concentration (Quiñones et al., 2009; Belmar et al., 

2011). Similar results were obtained for the OMZ of the Arabian Sea, with a clear maximum 

in crenarchaeol concentration at the oxycline (Pitcher et al., 2011b; Schouten et al., 2012). 

While no data for Thaumarchaeota distribution in the water column of the Chilean fjord 

region were available, the typical two layered structure with an oxycline at ca. 50-75 m and 

NH4
+ maximum between 25 and 100 m (Sievers, 2008; Silva, 2008) suggests a potential 

subsurface habitat of Thaumarchaeota in the fjords, as also suspected in a study of Norwegian 

fjords (Huguet et al., 2007). 
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In view of the ecological niche of the Thaumarchaeota, we tested the values of TEXH
86 (Eq. 

3; Table 2) against observed temperature of both the sea surface (0 m) and subsurface (0-200 

m depth-integrated; see Kim et al., 2008) for the marine and fjord sediments, and compared 

the resulting regional calibrations with the global ones (Fig. 3; Tables 2 and 4). TEXH
86 values 

correlated strongly with both SST and subsurface temperature off Chile, but the TEXH
86 

calibrations were statistically different from the global ocean calibrations in terms of slope 

and intercept (Fig. 3A, B; Table 4). The surface temperature calibration had a statistically 

similar slope, but a different intercept from the global calibration based on suspended 

particulate matter (SPM) from < 100 m water depth and in situ temperature (Schouten et al., 

2013; Fig. 3C; Tables 2 and 4. Similar results were obtained with the marine sediments only 

(data not shown), indicating that the different regional relationship between TEXH
86 and 

temperature is not caused by the inclusion of fjord sediments. Thaumarchaeota diversity, 

depth distribution in the water column, as well as seasonality, may explain the difference 

between the global and our local calibrations. However, the available environmental data are 

not sufficient to conclude which of these factors cause the observed difference between the 

calibration off Chile and the global calibration. Our results reveal that the isoGDGT 

distribution is closely related to surface temperature in both the fjords and the open ocean off 

Chile, likely because seasonality and depth habitat are similar in both systems. Although 

Thaumarchaeota are probably most abundant at depth (10-100 mwd) off Chile, we 

recommend using the regional TEXH
86 surface calibration established here in order to 

reconstruct annual mean surface palaeotemperature in these environments.  

 

4.3. TEX86 in lakes 
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While there was an apparent relationship between the TEX86 values of the sediments of 

relatively large lakes (water surface > 32 km2; sediments 6, 7, 9, 10, 22 and 33; Tables 1 and 

3) and mean annual lake (air) surface temperatures, the TEX86 values for the sediments of 

relatively small lakes (water surface < 0.1 km2; sediments 28, 29, 30 and 32; Tables 1 and 3) 

were much higher than what would be expected from mean annual surface temperature (Fig.  

4). This suggests a source of isoGDGTs in addition to water column-dwelling 

Thaumarchaeota in the relatively small lakes. In order to test this hypothesis, the GDGT-

0/crenarchaeol ratio was calculated (Table 3). Since methanogenic archaea synthesize GDGT-

0 (Schouten et al., 1998; Koga et al., 1998), but not crenarchaeol, a GDGT-0/crenarchaeol 

ratio value > 2 indicates that GDGT-0 (and thus also other isoGDGTs such as GDGT-1 and -

2) may originate from methanogenic archaea present in lakes (Blaga et al., 2009). While 

GDGT-0/crenarchaeol values of sediments 28 and 32 were indeed > 2, this was not the case 

for sediments 29 and 30. Therefore, the input of some isoGDGTs produced by terrestrial 

and/or aquatic methanogens may explain the elevated TEXH
86 values observed for certain, but 

not all, small lakes studied here. For the relatively large lakes, a strong correlation (r2 0.9) was 

observed between TEX86 values of the sediments (excluding sediment 6, where the GDGT-

0/cren ratio was > 2; Table 3) and mean annual lake (air) surface temperatures (Fig. 4). The 

calibration model [T = 50.7 x TEX86 – 11.8; standard error of estimates (SEE) 0.6 °C] is 

statistically similar to the global lake calibration of Powers et al. (2010) in terms of both slope 

and intercept (Tables 2 and 4). 

 

4.4. MBT’/CBT indices 

 

The mean BIT values for the marine and fjord sediments (< 0.1) suggest that the soil OM 

input may be too low for the application of the MBT’/CBT proxy (Eqs. 6 and 7), so the signal 

may be biased by production of brGDGTs in the marine water column and/or in the sediment 
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itself (Peterse et al., 2009, 2012; Zhu et al., 2011; Weijers et al., 2014). Indeed, MBT’/CBT 

MAAT estimates did not correlate (r2 0; not shown) with observed MAAT values of the 

adjacent continent (where the brGDGTs were assumed to be derived from Fig. 5A) and were 

generally ca. 2 to 6 °C higher. The high fractional abundances of brGDGTs with one 

cyclopentane in the marine and fjord sediments compared with lake sediments as revealed by 

PCA of the fractional abundance of all 12 analyzed brGDGTs (positive loading of GDGT-VIb 

and GDGT-VIIb on PC 1, which explained 75% of the variance; Fig.  5B) probably indicates 

in situ production of brGDGTs (Peterse et al., 2009; Weijers et al., 2014). Indeed, because the 

porewater of marine sediments is typically alkaline, in situ produced brGDGTs are 

characterized by a higher degree of cyclization (Peterse et al., 2009). Therefore, a low relative 

concentration and in situ production of certain brGDGTs prevented the application of the 

MBT’/CBT proxy to most of the fjord and marine sediments off Chile. However, as 

brGDGTs with 1-2 cyclopentane moieties mainly are produced in situ in marine sediments 

(Peterse et al., 2009), the BIT index, which is based on brGDGTs without cyclopentane 

moieties (Hopmans et al., 2004), is likely not affected by in situ production. 

In the lake sediments, a high abundance of soil OM could be expected from the relatively high 

BIT values (Fig. 2; Table 3). However, in situ production of certain brGDGTs in the water 

column and/or sediment of lakes has been implied from many studies in a wide variety of 

regions (Sinninghe Damsté et al., 2009; Tierney and Russell, 2009; Tierney et al., 2010a, 

2012; Bechtel et al., 2010; Loomis et al., 2011; Buckles et al., 2014). When the MBT’/CBT 

soil calibration (Peterse et al., 2012; Eqs. 6 and 7) was applied to the brGDGTs in the lake 

sediments, a significant correlation (r2 0.8) existed between estimated and observed mean 

annual surface (air and lake) temperatures, but the estimated temperature values were ca. 3 to 

6 °C below observed values (Fig.  5A). This agrees with previous studies and is likely due to 

in situ production of brGDGTs in lakes (see above). 
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Consequently, specific brGDGT calibrations for lake surface water temperature have been 

developed using lake surface sediments (Tierney et al., 2010a; Pearson et al., 2011; Sun et al., 

2011; Loomis et al., 2012). The two global calibrations developed by Sun et al. (2011) and 

Pearson et al. (2011) were tested for the lakes here (Eqs. 20-21; Table 2). While the Pearson 

et al. (2011) calibration, based on summer MAT, resulted in estimates ca. 2 to 7 °C above 

observed mean summer temperatures, the Sun et al. (2011) calibration based on MAAT 

provided temperature estimates closest to observed mean annual surface temperatures (Fig.  

5C). With the latter calibration, estimated and observed temperatures correlated significantly 

(r2 0.9) and the slope of the linear regression was close to one (0.8; Fig.  5D). The residuals (< 

0.8 °C; not shown) were within the calibration error of ± 4.3 °C (Sun et al., 2011). Therefore, 

while the absence of water pH data from certain lakes here prevented establishing a 

MBT/CBT regional calibration, reliable surface temperature estimates could be obtained by 

applying the global calibration from Sun et al. (2011) for the relatively small lakes, where the 

TEX86 proxy was not applicable (Section 4.3.). For the relatively large lakes, both branched 

and isoprenoid GDGT-based indices potentially allow reconstructing past lake surface 

temperature. 

 

5. Conclusions 

 

Different proxies based on isoprenoid and branched GDGTs in 33 surface sediments from 

open ocean, fjords and lakes in Chile were measured. The results corroborate the application 

of these organic proxies to the region. For the marine and fjord environments, the BIT index 

seemed to work well as a proxy for relative inputs of soil OM, although in situ production of 

some brGDGTs in the water column and/or the sediment cannot be fully excluded. While 

GDGT distributions were dominated by brGDGTs in lake sediments, brGDGTs were 
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probably produced predominantly in situ in the water column and/or the sediment. Therefore, 

the BIT index should not be used as a proxy for soil OM input to these lakes. 

 

The regional calibration of TEXH
86 with annual mean surface temperature for the fjord and 

marine sediments was statistically similar to the SPM global calibration in terms of slope, 

suggesting that GDGT distribution correlates with Thaumarchaeota growth temperature in 

surface (< 100 m) water of the fjords and open ocean off Chile. The regional TEX86 

calibration based on most of the relatively large lakes was statistically similar to the global 

TEX86 lake calibration. The production of some isoGDGTs by other (methanogenic) archaea 

prevented the application of TEX86 to relatively small lakes (water surface < 1 km2). 

 

In situ production of brGDGTs containing a relatively high amount of cyclopentane moieties 

in the water column and/or in the sediment prevented application of the MBT’/CBT 

palaeothermometer, using the soil-based calibration from Peterse et al. (2012), to the marine, 

fjord and lake environments. However, the global lake-specific MBT/CBT calibration of Sun 

et al. (2011) provided temperature estimates close to observed mean annual surface 

temperatures for all the lakes here. 
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Figure, table and appendix captions 

 

Fig. 1. (A) Distribution of mean annual SST (contour lines; data from World Ocean Atlas 

2001; Conkright et al., 2002) and air temperature (data from New et al., 2002). Arrows 

represent the main ocean surface currents in the southeast Pacific region (ACC, Antarctic 

Circumpolar Current; PCC, Peru-Chile Current; CHC, Cape Horn Current). (B) Detailed map 

with location of the surface sediments from marine (circles), fjord (triangles) and lake (stars) 

environments (see Tables 1 and 3). 

 

Fig. 2. (A) Concentrations of branched vs. isoprenoid GDGTs of the marine, fjord and lake 

sediments. (B) BIT index values vs. amount of brGDGTs (log scale). The dotted line 

represents the upper limit below which TEX86 indices are assumed not to be biased by soil-

derived GDGTs (Weijers et al., 2006b; see text for details). (C) Relative abundance of 

crenarchaeol and brGDGTs in the lake sediments. Numbers refer to sediments listed in Table 

1. 
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Fig. 3. Regional calibration lines for TEXH
86 and (A) annual mean surface (0 m) and (B) 

subsurface (integrated depth 0-200 m) temperature in comparison with global calibration 

curves. Circles and triangles represent marine and fjord sediments off Chile, respectively, and 

the grey dots the data used in the global calibrations from Kim et al. (2010, 2012a,b). 

Numbers refer to sediments in Table 1. See Table 2 for the equations of all calibration curves. 

 

 

Fig. 4. Correlation between TEX86 and mean annual surface temperature for relatively large 

(black stars) and small (grey stars) lakes. Note that sediment 6 was not included in the linear 

regression based on relatively large lakes (see text for details). The global correlation curve 

from Powers et al. (2010; Eq. 12; Table 2) is also shown (grey dashed line). Numbers refer to 

sediments in Table 1. 

 

Fig. 5. (A) Comparison between observed and estimated mean annual surface temperature 

using the MBT’/CBT soil-based calibration (Peterse et al., 2012; Eq. 14; Table 2) for the 

marine, fjord and lake sediments. Numbers refer to the sediments in Table 1. (B) PCA of the 

fractional abundance of brGDGTs in the marine, fjord and lake sediments. Roman numerals 

refer to structures in Appendix 1 and numbers to the sediments in Table 1. (C) Comparison of 

observed and estimated surface temperature using the different brGDGT-based indices and 

lake-specific calibrations from Sun et al. (2011; Eq. 15; Table 2) for mean annual temperature 

estimates and from Pearson et al. (2011; Eq. 16; Table 2) for mean summer temperature 

estimates. (D) Linear regression between observed and estimated mean annual surface 

temperature for the lakes using the global lake calibration from Sun et al. (2011; Eq. 15; Table 

2). 

 

Table 1 
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Sediment label, location, observed surface (0 m) and subsurface (0-200 m) mean annual water 

temperatures and values for the different GDGT-based indices ( n.d., no data. 

 

Table 2 

GDGT-based indices and reported global and regional (this study) calibration curves (fr, 

fractional abundance; SEE, standard error of estimate; roman numerals refer to structures in 

Appendix 1). 

 

Table 3 

General characteristics of sampled lakes (m.a.s.l., m above sea level; n.d., no data; BIT is 

defined in Table 2). 

 

Table 4 

Similarity of slopes and intercepts of different calibration curves considered in this study (see 

equations 7-13 in Table 2). A t-test probability value < 0.05 (in italics) indicates that the 

slopes/intercepts are significantly different from each other (Cohen et al., 2003; Wuensch, 

2013). Tests for the intercepts were not performed when the homogeneity of slope tests were 

not fulfilled (i.e. no parallel linear relationship between the covariate and the dependant 

variable) as an invalid analysis of the intercepts may result in inaccurate data interpretation 

(Hinkle et al., 2003). 

 

Appendix 1. Structures of the isoprenoid and branched GDGT membrane lipids. 

 

Appendix 2. Abundances (ng/g dw) of isoprenoid (GDGT-0, -1, -2, -3, -4, -4’) and branched 

(GDGT-VI, -VIa, -VIb, -VII, -VIIa, -VIIb, -VIII, -VIIIa, -VIIIb) GDGTs in the surface 

sediments. See Appendix 1 for the structures of the GDGTs. 
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Sediment Lat. Long. Core Water depth (m) Environment 0 m water temperature (°C) 0-200m water temperature (°C) BIT TEX86 TEX
H

86 CBT MBT' MBT

1 25°59'S 70°48'W GeoB7118-1 460 Marine 17.6 13.3 0.024 0.548 -0.261 0.006 0.324 0.315

2 25°59'S 70°50'W GeoB7122-2 673 Marine 17.6 13.3 0.016 0.538 -0.270 -0.102 0.298 0.289

3 28°25'S 71°19'W GeoB7129-1 476 Marine 16.4 12.6 0.023 0.534 -0.273 0.078 0.315 0.307

4 31°58'S 71°40'W GeoB7147-1 398 Marine 15.6 12.2 0.022 0.514 -0.289 0.190 0.316 0.308

5 36°32'S 73°40'W GeoB7162-4 798 Marine 14.4 11.5 0.017 0.478 -0.321 0.051 0.395 0.388

6 37°93'S 73°27'W LA-SL008 15 Lanalhue lake 12.5 n.d. 0.950 0.438 -0.359 0.708 0.324 0.322

7 38°17'S 73°33'W LL-SL002 38 Lleu Lleu lake 12 n.d. 0.917 0.458 -0.339 0.684 0.308 0.304

8 40°59'S 74°33'W GeoB7197-1 816 Marine 13.3 10.8 0.024 0.453 -0.344 0.151 0.369 0.362

9 41°05'S 71°20'W NH94-1 50 Nahuel Huapi lake 7.9 n.d. 0.477 0.391 -0.408 0.598 0.223 0.211

10 41°21'S 71°33'W PMAS93.4 30 Mascardi lake 8.5 n.d. 0.475 0.416 -0.381 1.085 0.288 0.286

11 41°42'S 72°46'W MD07-3105 329 Fjord 12.8 10.7 0.043 0.427 -0.370 0.362 0.451 0.447

12 41°42'S 72°40'W MD07-3108 458 Fjord 12.8 10.7 0.062 0.450 -0.347 0.383 0.440 0.436

13 44°09'S 75°09'W GeoB7182-1 301 Marine 12.1 9.9 0.056 0.472 -0.326 0.321 0.492 0.487

14 44°09'S 75°09'W MD07-3094 1132 Marine 12.1 9.9 0.026 0.446 -0.350 0.182 0.411 0.404

15 44°17'S 75°23'W GeoB7187-1 476 Marine 12.1 9.9 0.031 0.436 -0.361 0.146 0.396 0.389

16 44°19'S 75°22'W GeoB7189-1 868 Marine 12.1 9.9 0.023 0.450 -0.346 0.099 0.362 0.354

17 44°19'S 75°22'W MD07-3091 481 Marine 12.1 9.9 0.041 0.446 -0.351 0.242 0.393 0.387

18 45°23'S 73°28'W MD07-3114 294 Fjord 11.7 9.8 0.045 0.419 -0.378 0.438 0.372 0.368

19 47°53'S 74°29'W MD07-3122 663 Fjord 10.6 9.2 0.069 0.426 -0.371 0.426 0.426 0.426

20 47°53'S 74°29'W MD07-3120 662 Fjord 10.6 9.2 0.070 0.421 -0.376 0.408 0.430 0.422

21 48°27'S 76°16'W MD07-3086 1163 Marine 10.5 8.7 0.023 0.435 -0.361 0.127 0.320 0.311

22 48°57'S 71°13'W CAR99-10P 51 Cardiel lake 8.5 n.d. 0.344 0.402 -0.396 0.091 0.199 0.187

23 49°10'S 76°34'W MD07-3084 1790 Marine 10.1 8.7 0.022 0.416 -0.381 -0.148 0.281 0.270

24 50°05'S 75°06'W MDD-1SL 65 Fjord 9.3 9.5 0.041 0.412 -0.385 0.400 0.380 0.373

25 50°19'S 75°22'W MDD-3SL 65 Fjord 9.3 9.5 0.048 0.408 -0.389 0.170 0.399 0.393

26 50°36'S 74°59'W Conce-1SL 191 Fjord 9.5 9.5 0.061 0.431 -0.365 0.076 0.368 0.362

27 50°49'S 74°00'W Peel-4SL 39 Fjord 9.2 9.5 0.080 0.395 -0.403 0.584 0.304 0.301

28 52°49'S 72°54'W CH-4 16 Chandler lake 9 n.d. 0.996 0.591 -0.228 1.092 0.344 0.341

29 52°53'S 73°46'W TA-SL1 22 Tamar lake 6.4 n.d. 0.947 0.539 -0.269 1.233 0.273 0.271

30 53°26'S 72°55'W LH-SL 35 Humphrey lake 4.6 n.d. 0.909 0.485 -0.315 1.200 0.231 0.230

31 53°34'S 70°40'W MD07-3131 463 Fjord 7.8 7.3 0.042 0.369 -0.433 0.147 0.369 0.361

32 53°36'S 70°55'W LHAM-SL 23 Hambre lake 5.1 n.d. 0.996 0.561 -0.251 1.030 0.226 0.225



  

33 54°32'S 67°59'W LF06-G14 70 Fagnano lake 5.8 n.d. 0.824 0.343 -0.464 0.831 0.236 0.227



  

N° Eq. r2
SEE (°C) n Reference

1 BIT = (VI + VII + VIII)/(cren + VI + VII + VIII) Hopmans et al., 2004

2 TEX86 = (2 + 3 + cren isomer)/(1 + 2 + 3 + cren isomer) Schouten et al., 2002

3 TEXH
86 = log ((2 + 3 + cren isomer)/(1 + 2 + 3 + cren isomer)) Kim et al., 2010

4 MBT = (VI + VIb + VIc)/(VI + VIb + VIc + VII + VIIb + VIIc + VIII + VIIIb + VIIIc) Weijers et al., 2007a

5 CBT = -log [(VIb + VIIb)/(VI + VII)] Weijers et al., 2007a

6 MBT’ = (VI + VIb + VIc)/(VI + VIb + VIc + VII + VIIb + VIIc + VIII) Peterse et al., 2012

7 Tsurf
a = 68.4 x TEXH

86 + 38.6 0.9 2.5 255 Kim et al., 2010

8 Tsurf
a

 = 59.6 x TEXH
86 + 33.0 0.9 0.8 23 This study

9 Tsubsurf
b = 54.7 x TEXH

86 + 30.7 0.8 2.2 255 Kim et al., 2012a

10 Tsubsurf
b = 32.1 x TEXH

86 + 21.5 0.9 0.6 23 This study

11 T = 59.6 x TEXH
86 + 32.0 0.8 2.7 78 Schouten et al., 2013

12 Tsurf
a = 55.2 x TEX86 - 14.0 0.9 3.6 12 Powers et al., 2010

13 Tsurf
a = 50.7 x TEX86 - 11.8 0.9 0.6 5 This study

14 Tair
c = 0.8 - 5.7 x CBT + 31.0 x MBT' 0.6 5.0 176 Peterse et al., 2012

15 Tsurf
a = 6.8 - 7.1 x CBT + 37.1 x MBT 0.6 5.2 139 Sun et al., 2011

16 Tsum
d = 20.9 - 98.1 x frGDGT-VIb - 12 x frGDGT-VII - 20.5 x frGDGT-VIII 0.9 2.0 85 Pearson et al., 2011

a T surf  = surface water temperature

b T subsurf  = subsurface (0-200m) water temperature

c T air  = surface air temperature

d T sum  = surface water summer temperature



  

Lake Lanalhue Lleu Lleu Nahuel Huapi Mascardi Cardiel Chandler Tamar Humphrey Hambre Fagnano

Sediment 6 7 9 10 22 28 29 30 32 33

Latitude 37°93'S 38°17'S 41°05'S 41°21'S 48°57'S 52°49'S 52°53'S 53°26'S 53°36'S 54°32'S

Longitude 73°27'W 73°33'W 71°20'W 71°33'W 71°13'W 72°54'W 73°46'W 72°55'W 70°55'W 67°59'W

Lake altitude (m.a.s.l.) 8 5 770 808 276 45 35 68 68 26

Lake surface (km2) 32 37 646 39 370 0.02 0.07 <0.05 0.02 560

Catchment area (km2) 360 580 2758 700 4500 0.45 0.81 n.d. 0.11 2900

Surface/catchment ratio 0.09 0.06 0.23 0.06 0.08 0.04 0.09  ----- 0.18 0.19

Mean annual air temperature (°C) 12.5 12 7.9 8.5 8.5 9 6.4 4.6 5.1 6

Mean annual lake surface temperature °C) 11.5 12 7.9 8.5 n.d. n.d. n.d. n.d. n.d. 5.8

BIT 0.95 0.92 0.48 0.48 0.34 1 0.95 0.91 1 0.82

GDGT-0/cren 3.82 0.84 0.68 0.86 0.43 4.26 0.74 1.07 4642.69 0.63



  

 Similarity of slope Similarity of intercept 

Eq. 
Degree of 
freedom 

t-
value 

Probabilit
y 

Degree of 
freedom 

t-
value 

Probabilit
y 

TEXH
86 surface Kim et al. (2010) vs. this study 274 2.048 0.04 274 - - 

TEX
H

86 subsurface Kim et al. (2010) vs. this study 274 7.144 0.00 274 - - 

TEXH
86 surface Kim et al. (2010) vs. TEXH

86 SPM Schouten et al. (2013) 329 2.218 0.03 329 - - 

TEX
H

86 surface this study vs. TEX
H

86 SPM Schouten et al. (2013) 97 0.000 1.00 97 2.947 0.00 

TEXH
86 subsurface Kim et al. (2012a) vs. TEXH

86 SPM Schouten et al. 
(2013) 329 1.256 0.21 329 

26.50
9 0.00 

TEXH
86 subsurface this study vs. TEXH

86 SPM Schouten et al. (2013) 97 6.054 0.00 97 - - 

TEX86 lake Powers et al. (2010) vs. this study 14 0.038 0.97 14 0.252 0.81 
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Highlights 

• Analysis of surface sediments from lake, fjord and marine environments in Chile. 

• Development of regional marine TEXH
86 and lake TEX86 calibrations. 

• Potential in situ production of certain branched GDGTs. 
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