408 research outputs found

    Topological stripelike coreless textures with inner incommensurability in two-dimensional Heisenberg antiferromagnet

    Full text link
    For two-dimensional Heisenberg antiferromagnet we present an analysis of topological coreless excitations having a stripe form. These textures are characterized by singularities at boundaries. A detailed classification of the stripe textures results in a certain analogy with the coreless excitations in 3HeA^3He-A phase: Mermin-Ho and Anderson-Toulouse coreless vortices. The excitations of the last type may have a low bulk energy. The stripe textures may be observed as an occurrence of short-range incommensurate order in the antiferromagnetic environment

    Bose-Einstein condensation of semi-hard bosons in S=1 dimerized organic compound F2PNNNO

    Full text link
    An analysis of the energy spectrum and the magnetization curve of two-dimensional organic antiferromagnet F2PNNNO with a spin-one dimerized structure shows that a behavior of the compound in an external magnetic field can be explained within a lattice boson model with an extended Pauli's exclusion principle, i.e. no more than two bosons per a dimer. The unusual magnetization curve observed experimentally in the compound reflects a sequence of phase transitions intrinsic for a lattice boson system with strong on-site and inter-site repulsions due to a tuning of magnon density by the applied magnetic field

    Theory of magnetoelastic resonance in a mono-axial chiral helimagnet

    Full text link
    We study magnetoelastic resonance phenomena in a mono-axial chiral helimagnet belonging to hexagonal crystal class. By computing the spectrum of coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the mono-axial chiral helimagnet. The former phase exhibits appreciable non-reciprocity of the spectrum, the latter is characterized by a multi-resonance behavior. We propose that the non-reciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to circularly polarized one with the chirality opposite to the spin wave chirality.Comment: 12 pages, 5 figures, Accepted in Phys. Rev.

    Learning analytics in massive open online courses as a tool for predicting learner performance

    Full text link
    Learning analytics in MOOCs can be used to predict learner performance, which is critical as higher education is moving towards adaptive learning. Interdisciplinary methods used in the article allow for interpreting empirical qualitative data on performance in specific types of course assignments to predict learner performance and improve the quality of MOOCs. Learning analytics results make it possible to take the most from the data regarding the ways learners engage with information and their level of skills at entry. The article presents the results of applying the proposed learning analytics algorithm to analyze learner performance in specific MOOCs developed by Ural Federal University and offered through the National Open Education Platform. © 2018, National Research University Higher School of Economics.This study was support- ed by financial assis- tance provided under the Resolution of the Government of the Rus sian Federation No. 211, Contract No. 02. A03.21.0006. Translated from Russian by I. Zhuchkova

    Charge and spin Hall conductivity in metallic graphene

    Get PDF
    Graphene has an unusual low-energy band structure with four chiral bands and half-quantized and quantized Hall effects that have recently attracted theoretical and experimental attention. We study the Fermi energy and disorder dependence of its spin Hall conductivity. In the metallic regime we find that vertex corrections enhance the intrinsic spin Hall conductivity and that skew scattering can lead to its values that exceed the quantized ones expected when the chemical potential is inside the spin-orbit induced energy gap. We predict that large spin Hall conductivities will be observable in graphene even when the spin-orbit gap does not survive disorder.Comment: 4 pages, 2 figure

    Comment on "Exact results for survival probability in the multistate Landau-Zener model"

    Full text link
    We correct the proof of Brundobler-Elser formula (BEF) provided in [2004 \textit{J. Phys. B: At. Mol. Opt. Phys.} \textbf{37} 4069] and continued in Appendix of [2005 \textit{J. Phys. B: At. Mol. Opt. Phys.} \textbf{38} 907]. After showing that some changes of variables employed in these articles are used erroneously, we propose an alternative change of variables which solves the problem. In our proof, we reveal the connection between the BEF for a general NN-level Landau-Zener system and the exactly solvable bow-tie model. The special importance of the diabatic levels with maximum/minimum slope is emphasized throughout.Comment: 10 page
    corecore