70 research outputs found

    A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets

    Get PDF
    Stimulation of human platelets by cross-linking of the low affinity receptor for immunoglobulin, FcgammaRIIA, caused the rapid activation of the small GTPase Rap1B, as monitored by accumulation of the GTP-bound form of the protein. This process was totally dependent on the action of secreted ADP since it was completely prevented in the presence of either apyrase or creatine phosphate and creatine phosphokinase. Dose-dependent experiments revealed that the inhibitory effect of ADP scavengers was not related to the reduced increase of cytosolic Ca(2+) concentration in stimulated platelets. Activation of Rap1B induced by clustering of FcgammaRIIA was totally suppressed by AR-C69931MX, a specific antagonist of the G(i)-coupled ADP receptor P2Y12, but was not affected by blockade of the G(q)-coupled receptor, P2Y1. Similarly, direct stimulation of platelets with ADP induced the rapid activation of Rap1B. Pharmacological blockade of the P2Y1 receptor totally prevented ADP-induced Ca(2+) mobilization but did not affect activation of Rap1B. By contrast, prevention of ADP binding to the P2Y12 receptor totally suppressed activation of Rap1B without affecting Ca(2+) signaling. In platelets stimulated by cross-linking of FcgammaRIIA, inhibition of Rap1B activation by ADP scavengers could be overcome by the simultaneous recruitment of the G(i)-coupled alpha(2A)-adrenergic receptor by epinephrine. By contrast, serotonin, which binds to a G(q)-coupled receptor, could not restore activation of Rap1B. When tested alone, epinephrine was found to be able to induce GTP binding to Rap1B, whereas serotonin produced only a slight effect. Finally, activation of Rap1B induced by stimulation of the G(q)-coupled thromboxane A(2) receptor by was completely inhibited by ADP scavengers under conditions in which intracellular Ca(2+) mobilization was unaffected. Inhibition of -induced Rap1B activation was also observed upon blockade of the P2Y12 but not of the P2Y1 receptor for ADP. These results demonstrate that stimulation of a G(i)-dependent signaling pathway by either ADP of epinephrine is necessary and sufficient to activate the small GTPase Rap1B

    Contribution of Protease-activated Receptors 1 and 4 and Glycoprotein Ib-IX-V in the Gi-independent Activation of Platelet Rap1B by Thrombin

    Get PDF
    Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V

    Platelet Activation by von Willebrand Factor Requires Coordinated Signaling through Thromboxane A2 and FcÎłIIA Receptor

    Get PDF
    Interaction of von Willebrand Factor with glycoprotein Ib-IX-V induces platelet activation through a still poorly defined mechanism. Previous studies have suggested a possible role for the low affinity receptor for immunoglobulin, Fc gamma RIIA, in GPIb-IX-V signaling. Here we show that binding of vWF to platelets induces the tyrosine phosphorylation of Fc gamma RIIA by a Src kinase. Treatment of platelets with the anti-Fc gamma RIIA monoclonal antibody IV.3 specifically inhibits vWF-induced but not thrombin-induced pleckstrin phosphorylation and serotonin secretion. Moreover, vWF fails to induce pleckstrin phosphorylation in mouse platelets, lacking Fc gamma RIIA, and serotonin secretion is impaired. Pleckstrin phosphorylation and serotonin secretion in human platelets stimulated with vWF are blocked by the cyclooxygenase inhibitor acetylsalicylic acid. However, release of arachidonic acid and synthesis of TxA(2) induced by vWF are not affected by the anti-Fc gamma RIIA monoclonal antibody IV.3. Similarly, vWF-induced tyrosine phosphorylation of Fc gamma RIIA, as well as of Syk and PLC gamma 2, occurs normally in aspirinized platelets. Inhibition of the tyrosine kinase Syk by piceatannol does not affect vWF-induced tyrosine phosphorylation of Fc gamma RIIA but prevents phosphorylation of PLC gamma 2. Pleckstrin phosphorylation and platelet secretion induced by vWF, but not by thrombin, are also inhibited by piceatannol. Pleckstrin phosphorylation is also sensitive to the phosphatidylinositol 3-kinase inhibitor wortmannin. These results indicate that PLC gamma 2 plays a central role in platelet activation by vWF and that the stimulation of this enzyme requires coordinated signals through endogenous TxA(2) and Fc gamma RIIA

    A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B.

    Get PDF
    The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation

    Acupuncture for pain and pain-related disability in deep infiltrating endometriosis

    Get PDF
    ObjectivesTo evaluate the efficacy of acupuncture in relieving symptoms (dysmenorrhea, dyspareunia, pelvic pain and dyschezia) intensity, improving functional disability, reducing the number of days per months of dysmenorrhea, the frequency and the efficacy of analgesic use in deep infiltrating endometriosis (DIE). The safety profile was also evaluated.MethodsThe study sample was 34 patients with DIE; for 2 months (T-2, T-1) the women recorded diary notes on the numbers of days of menstruation, the presence, intensity, and disability related to dysmenorrhea, dyspareunia, pelvic pain, and dyschezia. They then received a total of 15 acupuncture treatments over 6 months (T1–T6; once a week for 12 weeks, then once a month for 3 months).ResultsDysmenorrhea intensity was decreased during treatment. A decrease of at least 50% in number of days of dysmenorrhea, and a decrease in moderate-to-severe disability starting from T1 to T6 was recorded for 58.6% of patients. Dyspareunia intensity steadily decreased starting at T2; the percentage of women with moderate-to-severe disability declined from 73.3% at T-2, to 36.9% at T3, T4, and T5. A decrease in pelvic pain score was noted starting at T1; the percentage of disability decreased from 83.3% at T-2 to 33.3% at T3 and T6. The intensity of dyschezia decreased from T-2 to T3 and T4 and then increased slightly. Analgesic drug use was lower during treatment and its efficacy appeared to be greater.ConclusionsThe limitations notwithstanding our study-findings show that acupuncture was safe and effective in reducing pain intensity and symptoms-related disability. Larger-scale studies are needed to compare acupuncture and pharmacotherapy for endometriosis-related pain

    Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT

    Get PDF
    Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein–coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal–regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt

    The diacylglycerol kinase α/Atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells
    • …
    corecore