359 research outputs found

    A flexible route to new spirodioxanes, oxathianes and morpholines

    Get PDF
    International audienceThis work describes a modular efficient route to 10-aza-4-thia-, 10-aza-4-oxa-, and 10-oxa-4-thia-1,7-dioxaspiro[5.5]undecanes. The synthetic pathway relies upon the iterative nucleophilic substitution of 1,3-dichloropropan-2-one O-benzyloxime by solketal derivatives. The oxime key-intermediates, submitted to an acidic deprotection–spiroacetalization process, afforded these original spiroketal compounds in three steps, few purifications, and very good yields

    Tactile sensing and control of robotic manipulator integrating fiber Bragg grating strain-sensor

    Get PDF
    Tactile sensing is an instrumental modality of robotic manipulation, as it provides information that is not accessible via remote sensors such as cameras or lidars. Touch is particularly crucial in unstructured environments, where the robot’s internal representation of manipulated objects is uncertain. In this study we present the sensorization of an existing artificial hand, with the aim to achieve fine control of robotic limbs and perception of object’s physical properties. Tactile feedback is conveyed by means of a soft sensor integrated at the fingertip of a robotic hand. The sensor consists of an optical fiber, housing Fiber Bragg Gratings (FBGs) transducers, embedded into a soft polymeric material integrated on a rigid hand. Through several tasks involving grasps of different objects in various conditions, the ability of the system to acquire information is assessed. Results show that a classifier based on the sensor outputs of the robotic hand is capable of accurately detecting both size and rigidity of the operated objects (99.36 and 100% accuracy, respectively). Furthermore, the outputs provide evidence of the ability to grab fragile objects without breakage or slippage e and to perform dynamic manipulative tasks, that involve the adaptation of fingers position based on the grasped objects’ condition

    Design, fabrication, and characterization of a multimodal reconfigurable bioreactor for bone tissue engineering

    Get PDF
    In the past decades, bone tissue engineering developed and exploited many typologies of bioreactors, which, besides providing proper culture conditions, aimed at integrating those bio-physical stimulations that cells experience in vivo, to promote osteogenic differentiation. Nevertheless, the highly challenging combination and deployment of many stimulation systems into a single bioreactor led to the generation of several unimodal bioreactors, investigating one or at mostly two of the required biophysical stimuli. These systems miss the physiological mimicry of bone cells environment, and often produced contrasting results, thus making the knowledge of bone mechanotransduction fragmented and often inconsistent. To overcome this issue, in this study we developed a perfusion and electroactive-vibrational reconfigurable stimulation bioreactor to investigate the differentiation of SaOS-2 bone-derived cells, hosting a piezoelectric nanocomposite membrane as cell culture substrate. This multimodal perfusion bioreactor is designed based on a numerical (finite element) model aimed at assessing the possibility to induce membrane nano-scaled vibrations (with ~12 nm amplitude at a frequency of 939 kHz) during perfusion (featuring 1.46 dyn cm−2 wall shear stress), large enough for inducing a physiologically-relevant electric output (in the order of 10 mV on average) on the membrane surface. This study explored the effects of different stimuli individually, enabling to switch on one stimulation at a time, and then to combine them to induce a faster bone matrix deposition rate. Biological results demonstrate that the multimodal configuration is the most effective in inducing SaOS-2 cell differentiation, leading to 20-fold higher collagen deposition compared to static cultures, and to 1.6- and 1.2-fold higher deposition than the perfused- or vibrated-only cultures. These promising results can provide tissue engineering scientists with a comprehensive and biomimetic stimulation platform for a better understanding of mechanotransduction phenomena beyond cells differentiation

    A Bioinspired Plasmonic Nanocomposite Actuator Sunlight-Driven by a Photothermal-Hygroscopic Effect for Sustainable Soft Robotics

    Get PDF
    Combined photothermal-hygroscopic effects enable novel materials actuation strategies based on renewable and sustainable energy sources such as sunlight. Plasmonic nanoparticles have gained considerable interest as photothermal agents, however, the employment in sunlight-driven photothermal-hygroscopic actuators is still bounded, mainly due to the limited absorbance once integrated into nanocomposite actuators and the restricted plasmonic peaks amplitude (compared to the solar spectrum). Herein, the design and fabrication of an AgNPs-based plasmonic photothermal-hygroscopic actuator integrated with printed cellulose tracks are reported (bioinspired to Geraniaceae seeds structures). The nanocomposite is actuated by sunlight power density (i.e., 1 Sun = 100 mW cm−2). The plasmonic AgNPs are in situ synthesized on the PDMS surface through a one-step and efficient fluoride-assisted synthesis (surface coverage ≈40%). The nanocomposite has a broadband absorbance in the VIS range (>1) and a Photothermal Conversion Efficiency ≈40%. The actuator is designed exploiting a mechanical model that predicted the curvature and forces, featuring a ≈6.8 ± 0.3 s response time, associated with a ≈43% change in curvature and a 0.76 ± 0.02 mN force under 1 Sun irradiation. The plasmonic nanocomposite actuator can be used for multiple tasks, as hinted through illustrative soft robotics demonstrators, thus fostering a bioinspired approach to developing embodied energy systems driven by sunlight

    pH-dependent redox and CO binding properties of chelated protoheme-L-histidine and protoheme-glycyl-L-histidine complexes

    Get PDF
    The pH dependence of redox properties, spectroscopic features and CO binding kinetics for the chelated protohemin-6(7)-L-histidine methyl ester (heme-H) and the chelated protohemin-6(7)-glycyl-L-histidine methyl ester (heme-GH) systems has been investigated between pH 2.0 and 12.0. The two heme systems appear to be modulated by four protonating groups, tentatively identified as coordinated H2O, one of heme's propionates, N epsilon of the coordinating imidazole, and the carboxylate of the histidine residue upon hydrolysis of the methyl ester group (in acid medium). The pK(a) values are different for the two hemes, thus reflecting structural differences. In particular, the different strain at the Fe-N-epsilon bond, related to the different length of the coordinating arm, results in a dramatic alteration of the bond strength, which is much smaller in heme-H than in heme-GH. It leads to a variation in the variation of the pKa for the protonation of the N-epsilon of the axial imidazole as well as in the proton-linked behavior of the other protonating groups, envisaging a cross-talk communication mechanism among different groups of the heme, which can be operative and relevant also in the presence of the protein matrix

    Role of lysines in cytochrome c – cardiolipin interaction

    Get PDF
    Cytochrome c undergoes structural variations during the apoptotic process; such changes have been related with modifications occurring in the protein when it forms a complex with cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several studies have been performed to identify the site(s) of the protein involved in the cytochrome c/cardiolipin interaction, to date the location of this hosting region(s) remains unidentified and is a matter of debate. To gain a deeper insight into the reaction mechanism, we investigate the role that the Lys72, Lys73 and Lys79 residues play in the cytochrome c/cardiolipin interaction, as these side chains appear to be critical for cytochrome c/cardiolipin recognition. The Lys72Asn, Lys73Asn, Lys79Asn, Lys72/73Asn and Lys72/73/79Asn mutants of horse heart cytochrome c were produced and characterized by circular dichroism, UV-visible and resonance Raman spectroscopies, and the effects of the mutations on the interaction of the variants with cardiolipin have been investigated. The mutants are characterized by a subpopulation with non-native axial coordination, and are less stable than the wild type protein. Furthermore, the mutants lacking Lys72 and/or Lys79 do not bind cardiolipin and those lacking Lys73, although they form a complex with the phospholipid, do not show any peroxidase activity. These observations indicate that the Lys72, Lys73 and Lys79 residues stabilize the native axial Met80-Fe(III) coordination as well as the tertiary structure of cytochrome c. Moreover, while Lys72 and Lys79 are critical for cytochrome c/cardiolipin recognition, the simultaneous presence of Lys72, Lys73 and Lys79 is necessary for peroxidase activity of cardiolipin-bound cytochrome c

    Progressive modular rebalancing system and visual cueing for gait rehabilitation in parkinson’s disease. A pilot, randomized, controlled trial with crossover

    Get PDF
    Introduction: The progressive modular rebalancing (PMR) system is a comprehensive rehabilitation approach derived from proprioceptive neuromuscular facilitation principles. PMR training encourages focus on trunk and proximal muscle function through direct perception, strength, and stretching exercises and emphasizes bi-articular muscle function in the improvement of gait performance. Sensory cueing, such as visual cues (VC), is one of the more established techniques for gait rehabilitation in PD. In this study, we propose PMR combined with VC for improving gait performance, balance, and trunk control during gait in patients with PD. Our assumption herein was that the effect of VC may add to improved motor performance induced by the PMR treatment. The primary aim of this study was to evaluate whether the PMR system plus VC was a more effective treatment option than standard physiotherapy in improving gait function in patients with PD. The secondary aim of the study was to evaluate the effect of this treatment on motor function severity. Design: Two-center, randomized, controlled, observer-blind, crossover study with a 4-month washout period. Participants: Forty individuals with idiopathic PD in Hoehn and Yahr stages 1–4. Intervention: Eight-week rehabilitation programs consisting of PMR plus VC (treatment A) and conventional physiotherapy (treatment B). Primary outcome measures: Spatiotemporal gait parameters, joint kinematics, and trunk kinematics. Secondary outcome measures: UPDRS-III scale scores. Results: The rehabilitation program was well-tolerated by individuals with PD and most participants showed improvements in gait variables and UPDRS-III scores with both treatments. However, patients who received PMR with VC showed better results in gait function with regard to gait performance (increased step length, gait speed, and joint kinematics), gait balance (increased step width and double support duration), and trunk control (increased trunk motion) than those receiving conventional physiotherapy. While crossover results revealed some differences in primary outcomes, only 37.5% of patients crossed over between the groups. As a result, our findings should be interpreted cautiously. Conclusions: The PMR plus VC program could be used to improve gait function and severity motor of motor deficit in individuals with PD

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form
    • …
    corecore