274 research outputs found

    Tactile sensing and control of robotic manipulator integrating fiber Bragg grating strain-sensor

    Get PDF
    Tactile sensing is an instrumental modality of robotic manipulation, as it provides information that is not accessible via remote sensors such as cameras or lidars. Touch is particularly crucial in unstructured environments, where the robot’s internal representation of manipulated objects is uncertain. In this study we present the sensorization of an existing artificial hand, with the aim to achieve fine control of robotic limbs and perception of object’s physical properties. Tactile feedback is conveyed by means of a soft sensor integrated at the fingertip of a robotic hand. The sensor consists of an optical fiber, housing Fiber Bragg Gratings (FBGs) transducers, embedded into a soft polymeric material integrated on a rigid hand. Through several tasks involving grasps of different objects in various conditions, the ability of the system to acquire information is assessed. Results show that a classifier based on the sensor outputs of the robotic hand is capable of accurately detecting both size and rigidity of the operated objects (99.36 and 100% accuracy, respectively). Furthermore, the outputs provide evidence of the ability to grab fragile objects without breakage or slippage e and to perform dynamic manipulative tasks, that involve the adaptation of fingers position based on the grasped objects’ condition

    Transient Plasma Ignition for Delay Reduction in Pulse Detonation Engines

    Get PDF
    45th AIAA Aerospace Sciences Meeting and Exhibit 8 - 11 January 2007, Reno, NevadaThis paper reviews the testing and evaluation of transient plasma for pulse detonation engine (PDE) ignition conducted at five laboratories. It also presents data showing significant reductions in times required for detonation. Critical to achieving functional levels of thrust are increased repetition rates, thus minimal delay to detonation times are an important parameter. Experiments have been conducted at the University of Southern California and in collaboration with researchers at the Naval Postgraduate School, Wright Patterson Air Force Research Laboratory, Stanford University, Ohio State University and the University of Cincinnati. In these studies it was observed that TPI significantly reduces delay times (factor of 2 to 9) in both static and flowing systems

    Transient Plasma Ignition for Delay Reduction in Pulse Detonation Engines

    Get PDF
    This presentation reviews testing and evaluation at four laboratories of transient plasma for pulse detonation engine (PDE) ignition, and presents data showing significant reductions in times required for detonation. The aerospace community has ongoing interests in the development of propulsion technologies based on pulse detonating engines (PDE), and work is underway to determine whether this is a feasible technology. The PDE provides impulse through fuel detonation, and potential advantages include efficient operation at both subsonic and supersonic speeds. In theory a PDE can efficiently operate from Mach 0 to more than Mach 4 [1,2]. In order to achieve almost continuous thrust firing rates of 100 Hz or more are needed. Critical to achieving high repetition rates are minimal delay to detonation times. In work supported by the Office of Naval Research and the Air Force Office of Scientific Research, transient plasma ignition (TPI) has consistently shown substantial reductions in ignition delay time for various fuels [3,4,5]. Experiments have been conducted at the University of Southern California and in collaboration with researchers at the Naval Postgraduate School, Wright Patterson Air Force Research Laboratory, Stanford University, the University of Cincinnati, and California Institute of Technology [6]. In these studies it was observed that TPI significantly reduces delay times in both static and flowing systems. Transient plasma ignition is attractive as an ignition source for PDEs because it produces reductions in ignition delay times, can reduce Deflagration to Detonation Transition (DDT) times, and has been shown to provide the capability to ignite under leaner conditions. This allows for high repetition rates, high altitude operation, and reduced NO, emissions [7,8]. The geometry of the discharge area is such that ignition is achieved with a high degree of spatial uniformity over a large volume relative to traditional spark ignition. The short timescale of the pulse ( < 100 ns) prevents formation of an arc, and a voluminous array of streamers is used for ignition. It is possible that energetic electrons in the highly non-equilibrated electron energy distribution of the streamers cause dissociation of hydrocarbon chain molecules, producing active radicals throughout the ignition volume [9]. A further advantage of TPI is that a smaller fraction of the electrical energy goes into thermal heating of the mixture. These effects allow for large numbers of active species to be generated throughout the volume

    Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images

    Get PDF
    The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization. Thus, for practical usage, a high-field (HF) MRI image is also acquired, and the HF-MRI images are co-registered to the ULF-MRI ones. We address here this issue through an optimized pipeline (SWIM-Sliding WIndow grouping supporting Mutual information). The co-registration is performed by an affine transformation, the parameters of which are estimated using Normalized Mutual Information as the cost function, and Adaptive Simulated Annealing as the minimization algorithm. The sub-voxel resolution of the ULF images is handled by a sliding-window approach applying multiple grouping strategies to down-sample HF MRI to the ULF-MRI resolution. The pipeline has been tested on phantom and real data from different ULF-MRI devices, and comparison with well-known toolboxes for fMRI analysis has been performed. Our pipeline always outperformed the fMRI toolboxes (FSL and SPM). The HF-ULF MRI co-registration obtained by means of our pipeline could lead to an effective integration of ULF MRI with MEG, with the aim of improving localization accuracy, but also to help exploit ULF MRI in tumor imaging

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    Influence of FTO rs9939609 and Mediterranean diet on body composition and weight loss: a randomized clinical trial

    Get PDF
    Background The Mediterranean diet (MeD) plays a key role in the prevention of obesity. Among the genes involved in obesity, the Fat mass and obesity-associated gene (FTO) is one of the most known, but its interaction with MeD remained uncertain so far. Methods We carried out a study on a sample of 188 Italian subjects, analyzing their FTO rs9939609 alleles, and the difference in body composition between the baseline and a 4-weeks nutritional intervention. The sample was divided into two groups: the control group of 49 subjects, and the MeD group of 139 subjects. Results We found significant relations between MeD and both variation of total body fat (ΔTBFat) (p = 0.00) and gynoid body fat (p = 0.04). ∆TBFat (kg) demonstrated to have a significant relation with the interaction diet-gene (p = 0.04), whereas FTO was associated with the variation of total body water (p = 0.02). Conclusions MeD demonstrated to be a good nutritional treatment to reduce the body fat mass, whereas data about FTO remain uncertain. Confirming or rejecting the hypothesis of FTO and its influence on body tissues during nutritional treatments is fundamental to decide whether its effect has to be taken into consideration during both development of dietetic plans and patients monitoring. Trial Registration ClinicalTrials.gov Id: NCT01890070. Registered 01 July 2013, https://clinicaltrials.gov/ct2/show/NCT0189007

    Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin

    Get PDF
    The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies

    The COSPAR planetary protection policy for missions to Icy Worlds: A review of history, current scientific knowledge, and future directions

    Get PDF
    Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50% water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28°C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10−4, probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return
    • 

    corecore