1,061 research outputs found

    Massive Gravity Theories and limits of Ghost-free Bigravity models

    Get PDF
    We construct a class of theories which extend New Massive Gravity to higher orders in curvature in any dimension. The lagrangians arise as limits of a new class of bimetric theories of Lovelock gravity, which are unitary theories free from the Boulware-Deser ghost. These Lovelock bigravity models represent the most general non-chiral ghost-free theories of an interacting massless and massive spin-two field in any dimension. The scaling limit is taken in such a way that unitarity is explicitly broken, but the Boulware-Deser ghost remains absent. This automatically implies the existence of a holographic cc-theorem for these theories. We also show that the Born-Infeld extension of New Massive Gravity falls into our class of models demonstrating that this theory is also free of the Boulware-Deser ghost. These results extend existing connections between New Massive Gravity, bigravity theories, Galileon theories and holographic cc-theorems.Comment: 11+5 page

    Dark Force Detection in Low Energy e-p Collisions

    Get PDF
    We study the prospects for detecting a light boson X with mass m_X < 100 MeV at a low energy electron-proton collider. We focus on the case where X dominantly decays to e+ e- as motivated by recent "dark force" models. In order to evade direct and indirect constraints, X must have small couplings to the standard model (alpha_X 10 MeV). By comparing the signal and background cross sections for the e- p e+ e- final state, we conclude that dark force detection requires an integrated luminosity of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde

    Nonlinear Dynamics of 3D Massive Gravity

    Full text link
    We explore the nonlinear classical dynamics of the three-dimensional theory of "New Massive Gravity" proposed by Bergshoeff, Hohm and Townsend. We find that the theory passes remarkably highly nontrivial consistency checks at the nonlinear level. In particular, we show that: (1) In the decoupling limit of the theory, the interactions of the helicity-0 mode are described by a single cubic term -- the so-called cubic Galileon -- previously found in the context of the DGP model and in certain 4D massive gravities. (2) The conformal mode of the metric coincides with the helicity-0 mode in the decoupling limit. Away from this limit the nonlinear dynamics of the former is described by a certain generalization of Galileon interactions, which like the Galileons themselves have a well-posed Cauchy problem. (3) We give a non-perturbative argument based on the presence of additional symmetries that the full theory does not lead to any extra degrees of freedom, suggesting that a 3D analog of the 4D Boulware-Deser ghost is not present in this theory. Last but not least, we generalize "New Massive Gravity" and construct a class of 3D cubic order massive models that retain the above properties.Comment: 21 page

    Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1

    Get PDF
    Tumor growth is intimately linked with stromal interactions. Myeloid derived suppressor cells (MDSCs) are dramatically elevated in cancer patients and tumor bearing mice. MDSCs modulate the tumor microenvironment through attenuating host immune response and increasing vascularization.In searching for molecular mediators responsible for pro-tumor functions, we found that regulator of G protein signaling-2 (Rgs2) is highly increased in tumor-derived MDSCs compared to control MDSCs. We further demonstrate that hypoxia, a common feature associated with solid tumors, upregulates the gene expression. Genetic deletion of Rgs2 in mice resulted in a significant retardation of tumor growth, and the tumors exhibit decreased vascular density and increased cell death. Interestingly, deletion of Rgs2 in MDSCs completely abolished their tumor promoting function, suggesting that Rgs2 signaling in MDSCs is responsible for the tumor promoting function. Cytokine array profiling identified that Rgs2-/- tumor MDSCs produce less MCP-1, leading to decreased angiogenesis, which could be restored with addition of recombinant MCP-1.Our data reveal Rgs2 as a critical regulator of the pro-angiogenic function of MDSCs in the tumor microenvironment, through regulating MCP-1 production

    Staphylococcus aureus Host Cell Invasion and Virulence in Sepsis Is Facilitated by the Multiple Repeats within FnBPA

    Get PDF
    Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn) bridging to α5β1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs) with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis

    Groundwater resources assessment using integrated geophysical techniques in the southwestern region of Peninsular Malaysia.

    Get PDF
    Combined geophysical techniques such as multi-electrode resistivity, induced polarization, and borehole geophysical techniques were carried out on volcano-sedimentary rocks in the north of Gemas as part of the groundwater resource’s investigations. The result identifies four resistivity units: the tuffaceous mudstone, tuffaceous sandstone, the tuff bed, and the shale layer. Two types of aquifer systems in terms of storage were identified within the area: one within a fracture system (tuff), which is the leaky area through which vertical flow of groundwater occurs, and an intergranular property of the sandy material of the aquifer which includes sandstone and tuffaceous sandstone. The result also reveals that the aquifer occupies a surface area of about 3,250,555 m2 with a mean depth of 43.71 m and a net volume of 9.798 × 107 m3. From the approximate volume of the porous zone (28 %) and the total aquifer volume, a usable capacity of (274.339 ± 30.177) × 107 m3 of water in the study area can be deduced. This study provides useful information that can be used to develop a much broader understanding of the nature of groundwater potential in the area and their relationship with the local geology

    Efficient and Specific Internal Cleavage of a Retroviral Palindromic DNA Sequence by Tetrameric HIV-1 Integrase

    Get PDF
    BACKGROUND: HIV-1 integrase (IN) catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequences, suggesting that a symmetry in the target DNA may stabilise the tetrameric organisation of IN in the synaptic complex. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the ability of several palindrome-containing sequences to organise tetrameric IN and investigated the ability of IN to catalyse DNA cleavage at internal positions. Only one palindromic sequence was successfully cleaved by IN. Interestingly, this symmetrical sequence corresponded to the 2-LTR junction of retroviral DNA circles-a palindrome similar but not identical to the consensus sequence found at integration sites. This reaction depended strictly on the cognate retroviral sequence of IN and required a full-length wild-type IN. Furthermore, the oligomeric state of IN responsible for this cleavage differed from that involved in the 3'-processing reaction. Palindromic cleavage strictly required the tetrameric form, whereas 3'-processing was efficiently catalysed by a dimer. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the restriction-like cleavage of palindromic sequences may be a general physiological activity of retroviral INs and that IN tetramerisation is strongly favoured by DNA symmetry, either at the target site for the concerted integration or when the DNA contains the 2-LTR junction in the case of the palindromic internal cleavage

    Azimuthal Anisotropy of Photon and Charged Particle Emission in Pb+Pb Collisions at 158 A GeV/c

    Full text link
    The azimuthal distributions of photons and charged particles with respect to the event plane are investigated as a function of centrality in Pb + Pb collisions at 158 A GeV/c in the WA98 experiment at the CERN SPS. The anisotropy of the azimuthal distributions is characterized using a Fourier analysis. For both the photon and charged particle distributions the first two Fourier coefficients are observed to decrease with increasing centrality. The observed anisotropies of the photon distributions compare well with the expectations from the charged particle measurements for all centralities.Comment: 8 pages and 6 figures. The manuscript has undergone a major revision. The unwanted correlations were enhanced in the random subdivision method used in the earlier version. The present version uses the more established method of division into subevents separated in rapidity to minimise short range correlations. The observed results for charged particles are in agreement with results from the other experiments. The observed anisotropy in photons is explained using flow results of pions and the correlations arising due to the decay of the neutral pion

    Conceptualizing handover strategies at change of shift in the emergency department: a grounded theory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance and complexity of handovers is well-established. Progress for intervening in the emergency department change of shift handovers may be hampered by lack of a conceptual framework. The objectives were to gain a better understanding of strategies used for change of shift handovers in an emergency care setting and to further expand current understanding and conceptualizations.</p> <p>Methods</p> <p>Observations, open-ended questions and interviews about handover strategies were collected at a Veteran's Health Administration Medical Center in the United States. All relevant staff in the emergency department was observed; 31 completed open-ended surveys; 10 completed in-depth interviews. The main variables of interest were strategies used for handovers at change of shift and obstacles to smooth handovers.</p> <p>Results</p> <p>Of 21 previously identified strategies, 8 were used consistently, 4 were never used, and 9 were used occasionally. Our data support ten additional strategies. Four agent types and 6 phases of the process were identified via grounded theory analysis. Six general themes or clusters emerged covering factors that intersect to define the degree of handover smoothness.</p> <p>Conclusion</p> <p>Including phases and agents in conceptualizations of handovers can help target interventions to improve patient safety. The conceptual model also clarifies unique handover considerations for the emergency department setting.</p

    The polycomb group protein EZH2 is involved in progression of prostate cancer

    Full text link
    Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling(1), that the polycomb group protein enhancer of zeste homolog 2 (EZH2)(2,3) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes(4) targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62896/1/nature01075.pd
    corecore