42 research outputs found

    Every Sperm Is Sacred: Fertilization in Caenorhabditis elegans

    Get PDF
    AbstractThe nematode Caenorhabditis elegans is an attractive model system for the study of fertilization. C. elegans exists as a self-fertilizing hermaphrodite or as a male. This unusual situation provides an excellent opportunity to identify and maintain sterile mutants that affect sperm and no other cells. Analysis of these mutants can identify genes that encode proteins required for gamete recognition, adhesion, signaling, fusion, and/or activation at fertilization. These genes can also provide a starting point for the identification of additional molecules required for fertility. This review describes progress in the genetic and molecular dissection of fertilization in C. elegans and related studies on sperm competition

    Oocyte production and sperm utilization patterns in semi-fertile strains of Caenorhabditis elegans

    Get PDF
    BACKGROUND: Caenorhabditis elegans hermaphrodites are capable of producing hundreds of progeny. However, genetic and environmental factors can keep many animals from attaining their full reproductive potential. In these situations, efficient use of any functional gametes becomes more important for reproductive success. To learn about this aspect of C. elegans reproductive biology, we examined oocyte production and sperm utilization patterns in a unique collection of semi-fertile sperm function mutants. RESULTS: In the mutants examined here, broods can be very small but sperm induced high levels of ovulation. Ovulation rates reach maximum levels between the first and second day of adulthood. Ovulations rates remain high during the reproductive period and gradually decline with age. These results further demonstrate a decoupling of the ability of sperm to fertilize oocytes and induce ovulation. We also observe that in our semi-fertile mutants the peak of successful fertilization events precedes the bulk of oocyte production. Mixing populations of functional and nonfunctional sperm under conditions without sperm competition also shows that functional sperm are utilized efficiently. Although overall brood size can be similar for different mutant strains, slight differences in the pattern of sperm utilization in these strains can lead to significant differences in resource utilization and population growth. CONCLUSIONS: This study represents the first detailed description of oocyte and progeny production patterns over the entire reproductive period for wild-type and fertility impaired strains of C. elegans. The phenotype of our mutants provide an ideal system for studying sperm utilization patterns since they only affect one major process, the ability to fertilize oocytes. In semi-fertile mutants, the nature of the reproductive process and/or specific molecular mechanisms ensures that any functional sperm are utilized quickly. Only a fraction of the sperm produced by our semi-sterile mutants are functional as opposed to every sperm having a low but equal chance of fertilizing an oocyte. In addition to the number of progeny produced, the pattern of progeny production can have an important influence on the dynamics of population growth

    Dynamic localization of SPE-9 in sperm: a protein required for sperm-oocyte interactions in Caenorhabditis elegans

    Get PDF
    BACKGROUND: Fertilization in Caenorhabditis elegans requires functional SPE-9 protein in sperm. SPE-9 is a transmembrane protein with a predicted extracellular domain that contains ten epidermal growth factor (EGF)-like motifs. The presence of these EGF-like motifs suggests that SPE-9 is likely to function in gamete adhesive and/or ligand-receptor interactions. RESULTS: We obtained specific antisera directed against different regions of SPE-9 in order to determine its subcellular localization. SPE-9 is segregated to spermatids with a pattern that is consistent with localization to the plasma membrane. During spermiogenesis, SPE-9 becomes localized to spiky projections that coalesce to form a pseudopod. This leads to an accumulation of SPE-9 on the pseudopod of mature sperm. CONCLUSIONS: The wild type localization patterns of SPE-9 provide further evidence that like the sperm of other species, C. elegans sperm have molecularly mosaic and dynamic regions. SPE-9 is redistributed by what is likely to be a novel mechanism that is very fast (~5 minutes) and is coincident with dramatic rearrangements in the major sperm protein cytoskeleton. We conclude that SPE-9 ends up in a location on mature sperm where it can function during fertilization and this localization defines the sperm region required for these interactions

    Use of SNPs to determine the breakpoints of complex deficiencies, facilitating gene mapping in Caenorhabditis elegans

    Get PDF
    BACKGROUND: Genetic deletions or deficiencies have been used for gene mapping and discovery in various organisms, ranging from the nematode Caenorhabditis elegans all the way to humans. One problem with large deletions is the determination of the location of their breakpoints. This is exacerbated in the case of complex deficiencies that delete a region of the genome, while retaining some of the intervening sequence. Previous methods, using genetic complementation or cytology were hampered by low marker density and were consequently not very precise at positioning the breakpoints of complex deficiencies. The identification of increasing numbers of Single Nucleotide Polymorphisms (SNPs) has resulted in the use of these as genetic markers, and consequently in their utilization for defining the breakpoints of deletions using molecular biology methods. RESULTS: Here, we show that SNPs can be used to help position the breakpoints of a complex deficiency in C. elegans. The technique uses a combination of genetic crosses and molecular biology to generate robust and highly reproducible results with strong internal controls when trying to determine the breakpoints of deficiencies. The combined use of this technique and standard genetic mapping allowed us to rapidly narrow down the region of interest in our attempts to clone a gene. CONCLUSION: Unlike previous methods used to locate deficiency breakpoints, our technique has the advantage of not being limited by the amount of starting material. It also incorporates internal controls to eliminate false positives and negatives. The technique can also easily be adapted for use in other organisms in which both genetic deficiencies and SNPs are available, thereby aiding gene discovery in these other models

    Regulation of MBK-2/DYRK by CDK-1 and the Pseudophosphatases EGG-4 and EGG-5 during the Oocyte-to-Embryo Transition

    Get PDF
    SummaryDYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the transition. MBK-2 is activated during oocyte maturation by CDK-1-dependent phosphorylation of serine 68, a residue outside of the kinase domain required for full activity in vivo. The pseudotyrosine phosphatases EGG-4 and EGG-5 sequester activated MBK-2 until the meiotic divisions by binding to the YTY motif and inhibiting MBK-2′s kinase activity directly, using a mixed-inhibition mechanism that does not involve tyrosine dephosphorylation. Our findings link cell-cycle progression to MBK-2/DYRK activation and the oocyte-to-embryo transition

    The Egg Surface LDL Receptor Repeat-Containing Proteins EGG-1 and EGG-2 Are Required for Fertilization in Caenorhabditis elegans

    Get PDF
    SummaryThe molecular machinery that mediates sperm-egg interactions at fertilization is largely unknown. We identify two partially redundant egg surface LDL receptor repeat-containing proteins (EGG-1 and EGG-2) that are required for Caenorhabditis elegans fertility in hermaphrodites, but not males. Wild-type sperm cannot enter the morphologically normal oocytes produced by hermaphrodites that lack egg-1 and egg-2 function despite direct gamete contact. Furthermore, we find that levels of meiotic maturation/ovulation and sperm migratory behavior are altered in egg-1 mutants. These observations suggest an unexpected regulatory link between fertilization and other events necessary for reproductive success. egg-1 and egg-2 are the result of a gene duplication in the nematode lineage leading to C. elegans. The two closely related species C. briggsae and C. remanei encode only a single egg-1/egg-2 homolog that is required for hermaphrodite/female fertility. In addition to being the first identified egg components of the nematode fertilization machinery, the egg-1 and egg-2 gene duplication could be vital with regards to maximizing C. elegans fecundity and understanding the evolutionary differentiation of molecular function and speciation

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore