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The nematode Caenorhabditis elegans is an attractive model system for the study of fertilization. C. elegans exists as a
self-fertilizing hermaphrodite or as a male. This unusual situation provides an excellent opportunity to identify and
maintain sterile mutants that affect sperm and no other cells. Analysis of these mutants can identify genes that encode
proteins required for gamete recognition, adhesion, signaling, fusion, and/or activation at fertilization. These genes can also
provide a starting point for the identification of additional molecules required for fertility. This review describes progress
in the genetic and molecular dissection of fertilization in C. elegans and related studies on sperm competition.
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INTRODUCTION

For sexually reproducing species, events leading to the
fusion of gametes are prerequisites for the development
of a new individual with a unique combination of genes.
Gametes are highly specialized in order to assure concep-
tion. Eggs are large and essentially stationary cells that
must contain most of the raw materials required to
sustain zygotes through embryogenesis. In contrast,
sperm are small cells that often contain little more than
a haploid nucleus, mitochondria for energy generation,
and cellular structures devoted to motility. Sperm must
also be adapted to the particular environment in which
they function (i.e., sea water or reproductive tract).
Consequently, sperm morphology varies considerably
between species. Despite this variability, all sperm must
accomplish similar tasks. First, they must locate and
move toward an egg. Second, they must bind to the egg,
often in a species-specific manner. Third, they must fuse
with or enter the egg and trigger the developmental
program that results in a new individual. For general
reviews on fertilization see Yanagimachi (1994), Vacquier
(1998), and Wassarman (1999). The fundamental mecha-
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nisms that underlie events of fertilization are conserved
in many other important cell-cell interactions during the
life and development of multicellular organisms.

The nematode Caenorhabditis elegans is a well-
established model system for the study of many biological
processes (Riddle et al., 1997). C. elegans is also emerging as
an attractive system for studying the complexities of fer-
tilization. Many of the genetic and molecular tools devel-
oped for C. elegans are not available or very difficult to
utilize in the other organisms traditionally used for study-
ing fertilization. The amoeboid sperm of C. elegans, despite
lacking an acrosome and flagellum (Fig. 1), carry out the
same basic functions common to all sperm. The most
significant advantage of C. elegans is the ability to isolate
and maintain mutants that affect sperm and no other cells.
This is accomplished by selecting sterile hermaphrodites
that cannot produce self-progeny, but whose oocytes can be
fertilized by wild-type male sperm. Another advantage of
the worm is its transparent cuticle. This allows for direct
observation of gametogenesis, gamete behavior, and fertili-
zation in wild-type or mutant animals. Additionally, vari-
ous molecular probes, together with modern microscopy,
can be used to detect cellular behaviors and physiological
changes as they occur in vivo. Gene expression data, made
possible by the sequencing of the worm genome and DNA
microarrays, can simplify the identification and analysis of
genes required for fertility (Reinke et al., 2000). Finally,
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FIG. 1. C. elegans spermatozoa. (A) Transmission electron micrograph. P = pseudopod, N = nucleus, M = mitochondria, MO =
membranous organelles, LM = laminar membranes. (B) Scanning electron micrograph. (C) Light micrograph.

both sperm (L’Hernault and Roberts, 1995) and oocytes
(Aroian et al., 1997) can be isolated in relatively large
quantities. Therefore, biochemical approaches can also be
applied to the study of C. elegans reproductive biology.

Fertilization in C. elegans has been previously described
in a number of excellent papers and reviews (Kemphues and
Strome, 1997; Kimble and Ward, 1988; Ward and Carrel,
1979; Hirsh et al., 1976; Honda, 1925). Here, | review the
events of fertilization in C. elegans with an emphasis on
new insights and important unresolved questions. | will
also consider important work with C. elegans concerning
issues of sperm competition, an important form of sexual
selection.

GENERAL FEATURES OF C. elegans
REPRODUCTIVE BIOLOGY

As noted above, C. elegans exists primarily as self-fertile
hermaphrodites (karyotype 5AA, XX) that make both sperm
and eggs or as males that make only sperm (karyotype 5AA,
Xd) (reviewed by Meyer, 1997). Hermaphrodites, during
their last larval stage, produce about 300 sperm and then
switch to producing oocytes. Therefore, adult hermaphro-
dites are essentially females with stored sperm. Adult
males continually produce sperm and can mate with her-
maphrodites to produce cross-progeny. The internal fertili-
zation of C. elegans is extremely efficient. An unmated
hermaphrodite will use all of its sperm and produce about
300 progeny. When a hermaphrodite is mated to males, they
can produce as many as 1400 progeny (Kimble and Ward,
1988). A male worm has the potential to sire more than
2800 progeny (Hodgkin, 1983).

HERMAPHRODITE AND MALE
REPRODUCTIVE TRACTS

For an in-depth description of C. elegans reproductive
tract development and structure, see Hubbard and Green-
stein (2000), Schedl (1997), Hirsh et al. (1976), and Klass et
al. (1976). The adult reproductive tract, much like the
worm body, is a tubelike structure with a distal (tip of the
gonad) -to-proximal (opening to the exterior) axis (Fig. 2A).
Hermaphrodites have two U-shaped gonad arms that each
terminate proximally at a spermatheca. The spermatheca is
a convoluted tube that serves as the site of sperm storage
and fertilization (Fig. 2B). A distal constriction separates the
spermatheca from the gonad arm while a proximal constric-
tion (spermathecal valve) separates the spermatheca from
the uterus (Hirsh et al., 1976; Ward and Carrel, 1979). Both
spermathecae are connected to a common uterus with a
central vulval opening. Males have a single J-shaped testis
connected to a cloaca via a seminal vesicle, a valve region,
and vas deferens (Fig. 2A) (Klass et al., 1976). Males use
mating structures on their tail to locate the hermaphrodite
vulva and deposit sperm into the uterus. For a full descrip-
tion of male mating behavior see Liu and Sternberg (1995)
and Emmons and Sternberg (1997). Both hermaphrodites
and males have a basement membrane that surrounds the
gonad. The proximal end of the hermaphrodite gonad is also
surrounded by a contractile myoepithelial sheath (Mc-
Carter et al., 1997; Hall et al., 1999). In both sexes, gametes
differentiate as they move proximally.

GAMETE MATURATION

There are a number of key events just prior to the meeting
of sperm and oocytes that prepare them for fertilization.
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FIG. 2.
the region of the spermatheca.

Oocytes must undergo oocyte maturation and ovulation,
while spermatids must undergo spermiogenesis to become
fully functional and motile spermatozoa. For a description of
gametogenesis prior to the events described here see Hubbard
and Greenstein (2000), Schedl (1997) and L’Hernault (1997).

Oocyte Maturation and Ovulation

Late-stage oocytes in diakinesis of prophase | enlarge,
mature, and are ovulated from the oviduct in an assembly

cloaca

male copulatory structures

(A) The hermaphrodite and male reproductive tracts. (B) A schematic and light micrograph of the C. elegans reproductive tract in

line-like fashion roughly every 20 min (McCarter et al.,
1999; Ward and Carrel, 1979). During late oogenesis, the
oocyte nucleus migrates distally. The significance of this
apparent polarization, although important in other nema-
tode species, is unclear since the sperm entry point specifies
the future anterior—posterior axis of the embryo in C.
elegans (Goldstein et al., 1998; Goldstein and Hird, 1996;
Golden, 2000). Oocyte maturation refers to the transition
from diakinesis to metaphase | (McCarter et al., 1999).
Nuclear envelope breakdown occurs followed by a cortical
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rearrangement that transforms the oocyte to a rounder
shape. Just prior to ovulation, the gonadal sheath cells
significantly increase their contractile activity. Finally, the
distal spermatheca dilates and appears to be pulled over the
oocyte at ovulation (McCarter et al., 1999; Ward and Carrel,
1979).

Several gamete signaling events are required for high
levels of oocyte maturation and ovulation (McCarter et al.,
1999). First, sperm are necessary to trigger oocyte matura-
tion and basal gonadal sheath activity. Second, the matur-
ing oocyte triggers the intense sheath activity and sper-
mathecal dilation at ovulation. The nature of these signals
is largely unknown. However, spermathecal dilation seems
to require LET-23 (EGF-receptor) function (J. McCarter and
T. Schedl, unpublished observation) in conjunction with an
IP;-mediated pathway (Clandinin et al., 1998). Addition-
ally, major sperm protein (MSP, see below), a molecule that
plays a central role in pseudopod motility, can promote
oocyte maturation and sheath contraction (M. Miller and D.
Greenstein, unpublished observation). Analysis of mutants
that affect ovulation should shed more light on the nature
of these signaling pathways. When events surrounding
ovulation are not coordinated, oocytes are often damaged
(McCarter et al., 1999, 1997; Clandinin et al., 1998; Green-
stein et al., 1994). Furthermore, since sperm are a limited
resource in an unmated hermaphrodite, these signaling
systems may help prevent the worm from wasting meta-
bolically costly oocytes when sperm are not present in the
reproductive tract.

Spermiogenesis and Motility

Spermiogenesis, or sperm activation, refers to the process
where round, sessile spermatids are converted to bipolar,
crawling spermatozoa capable of fertilizing an egg. The
cellular events of spermiogenesis include (1) protrusion of
spikelike structures that eventually coalesce into a single
pseudopod; (2) fusion of sperm-specific membranous or-
ganelles (MO, Fig. 1A) with the plasma membrane; and (3)
initiation of motility (Shakes and Ward, 1989). The precise
function of the MO is not known. However, mutations that
block MO fusion produce sperm with motility defects and
the worms are sterile (Achanzar and Ward, 1997). Upon
fusion with the sperm plasma membrane, the primarily
glycoprotein contents of the MOs are exocytosed (Ward et
al., 1981). Additionally, the MOs contribute membrane
glycoproteins to the cell surface (Roberts et al., 1986).

The amoeboid sperm of C. elegans crawl with a single
pseudopod that projects from and drags the cell body (Fig. 1).
Interestingly, nematode sperm motility is not actin based.
Rather it depends on the dynamic polymerization of a
14-kDa major sperm protein (Italiano et al., 1996). For
reviews on nematode sperm motility, see Ward et al. (1982),
Theriot (1996), or Roberts and Stewart (2000).

Spermiogenesis occurs under different conditions for her-
maphrodites and males. In hermaphrodites, the first ovu-
lated oocyte pushes spermatids from the proximal gonad
arm into the spermatheca and spermiogenesis occurs during
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this passage (Ward and Carrel, 1979). In males, spermiogen-
esis occurs upon mating. Mutations in a number of genes
(fer-15, spe-8, spe-12, spe-27, and spe-29) cause worms to
accumulate spermatids that do not undergo spermiogenesis
(Nance et al., 1999; Minniti et al., 1996; Shakes and Ward,
1989; L’Hernault, 1997). There must be distinct mecha-
nisms for male and hermaphrodite activation because the
spe-8, spe-12, spe-27, and spe-29 mutants block spermio-
genesis only in hermaphrodites. Hermaphrodite and male
activators are not known. However, seminal fluid can
activate spermatids from both sexes (Shakes and Ward,
1989; Ward et al., 1983). Because the spe-12 and spe-27
genes encode novel proteins, the overall nature of the
spermiogenesis signaling pathway is still unclear (Nance et
al., 1999; Minniti et al., 1996).

After spermiogenesis, hermaphrodite-derived sperm re-
main in the spermatheca awaiting passage of the next
oocyte. The amoeboid nature of C. elegans sperm seems
exquisitely adapted to the cramped environment in which
they function. The lumen of the spermatheca presents a
highly involuted surface where sperm tightly imbed their
pseudopods (Ward and Carrel, 1979). Male-derived sperm,
following deposition into the uterus just under the vulva,
must crawl the length of the uterus past a “boulder field” of
developing embryos to a spermatheca (Fig. 2). Additionally,
since the volume of the spermatheca is not much larger
than passing oocytes, sperm are often “swept” into the
uterus. In an older hermaphrodite, remaining sperm may
have been migrating against a flow of oocytes for five or
more days. The movement of sperm toward the sper-
matheca appears directed and nonrandom (Ward and Carrel,
1979). It is unknown what attracts sperm to the sper-
matheca.

FERTILIZATION

In C. elegans, fertilization occurs in the spermatheca. If
an oocyte passes through a spermatheca without being
fertilized, it does not complete meiosis or secrete an egg-
shell. Unfertilized oocytes undergo rounds of endomitotic
DNA replication without cytokinesis (Ward and Carrel,
1979). These polyploid and unhealthy cells are eventually
laid by hermaphrodites and can be easily seen as large
mushy dark brown cells. Additionally, fertilization will not
occur in the proximal oviduct. In mutants that do not
ovulate, fertilization is not observed (Clandinin et al., 1998;
lwasaki et al., 1996).

When an oocyte is ovulated, it can come in contact with
hundreds of sperm in the spermatheca. There is a very
potent but unknown block to polyspermy since each oocyte
is fertilized by only a single sperm (Ward and Carrel, 1979).
Fertilization occurs very rapidly and often before the oocyte
has fully entered the spermatheca (Ward and Carrel, 1979;
A. Samuel, V. Murthy, and M. Hengartner, unpublished
observations). The final interactions of sperm and oocyte in
C. elegans have not yet been captured by electron micros-
copy. Therefore, there are still a number of mysteries
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concerning sperm-oocyte interactions. For example, the
cellular region of sperm that contacts the oocyte at fertili-
zation is not known. Additionally, it is unclear as to
whether sperm fuse with oocytes at the plasma membrane
or are engulfed. In other nematode species, the pseudopod
interacts with the oocyte surface and gamete membranes
fuse almost immediately (Foor, 1970, 1968).

C. elegans oocytes are somewhat unusual in that they
apparently lack an egg coat. It is uncertain whether “wispy”
material seen in some micrographs of C. elegans oocytes
represents an egg coat (D. Hall, personal communication).
Some nematode species clearly have extracellular material
surrounding the oocyte (Foor, 1970, 1968). However, these
“extraneous egg coats” do not pose a significant barrier to
sperm penetration and could explain why nematode sperm
lack an acrosome (Foor, 1970).

The sperm entry point in C. elegans fertilization usually
occurs at the leading edge of the oocyte just as it enters the
spermatheca (Goldstein and Hird, 1996; A. Samuel, V.
Murthy, and M. Hengartner, unpublished observations).
There is not, however, a single sperm entry point since
sperm have the ability to enter anywhere on the oocyte
surface (Goldstein and Hird, 1996).

EGG ACTIVATION AND THE SPERM'’S
CONTRIBUTION TO THE ZYGOTE

After being fertilized in the spermatheca, the zygote
completes meiosis, begins embryogenesis, secretes a tough
chitinous eggshell, passes through the uterus, and is laid
prior to hatching. Sperm entry specifies the embryonic axis,
activates the embryonic program, and triggers a constella-
tion of events that together are generally referred to as egg
activation. The exact mechanism of egg activation and its
relationship to the embryonic program is not well under-
stood. In C. elegans, the events of egg activation include (1)
a single transient rise in intracellular [Ca®'] originating
from the sperm entry point (A. Samuel, V. Murthy, and M.
Hengartner, unpublished observations); (2) completion of
the meiotic cell cycle and entry into the mitotic cell cycle;
and (3) cytoplasmic rearrangements associated with the
specification of the embryonic axis (reviewed by Kemphues
and Strome, 1997; Golden, 2000).

Sperm also make a number of important contributions to
the C. elegans zygote. The paternal haploid nucleus is
required for a diploid embryo to develop. In a beautiful set
of experiments, Sadler and Shakes (2000) demonstrated that
anucleate sperm can fertilize oocytes, complete meiosis,
secrete an eggshell, direct the embryonic axis, and develop
quite normally before arresting. Centrosomes are also in-
herited paternally and they nucleate microtubules that
mediate pronuclear migration and compose the mitotic
spindle (Albertson, 1984; Albertson and Thomson, 1993).
Additionally, components of the sperm pronucleus/
centrosome complex are thought to signal to the egg cell
cortex to promote changes that drive cell polarity
(O’Connell et al., 2000; Kemphues, 2000). The spe-11 pro-

105

Cc

wild-type

A B X

wild-type

o [ I o
c ol oe0® oo’
o© © YK [«
o ® e SA)
O shelled eggs ® ~ ococytes O “shelled eggs
o o

FIG. 3. The spermatogenesis (Spe) defective or fertilization (Fer)
defective phenotype. (A) Wild-type worms are self-fertile. (B) Spe
and Fer mutant worms are self-sterile and lay oocytes. (C) When
Spe or Fer mutants are crossed to wild-type males (a source of
sperm), they can produce outcross-progeny.

tein has also been implicated in some aspects of egg
activation. Loss of function mutations in spe-11 lead to a
paternal-effect lethal phenotype where embryos fail to
complete meiosis, form only a thin eggshell, show defects
in spindle orientation, and fail to undergo cytokinesis (Hill
et al., 1989). Sperm normally supply the novel spe-11
protein to the zygote. However, genetically engineered
worms that express spe-11 in oocytes can fully rescue
embryo viability (Browning and Strome, 1996). Finally,
since unfertilized embryos undergo repeated DNA replica-
tion, sperm are involved in the choice between endomitosis
and meiotic completion (Sadler and Shakes, 2000). The
exact relationship between the sperm supplied factors dis-
cussed here and egg activation need to be more fully
determined.

GENETIC AND MOLECULAR ANALYSIS
OF FERTILIZATION

The hermaphrodite/male nature of C. elegans facilitates
the identification of mutants that affect sperm and no other
cells. Mutant hermaphrodites that are spermatogenesis-
defective (spe) or fertilization-defective (fer) are self-sterile
and lay unfertilized oocytes (Fig. 3). However, when these
otherwise healthy worms are crossed to wild-type males as
a source of sperm, they can produce progeny. Genetic
screens for this phenotype have identified more than 40

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.



106

genes that affect sperm development or function (for re-
views see L’Hernault and Singson, 2000; L’Hernault, 1997).
The fer gene designation has been discontinued and all new
mutants that display the phenotype depicted in Fig. 3 are
now given the spe designation. Based on the number of spe
and fer genes with multiple alleles and the large number of
known sperm-specific transcripts, the worm genome is still
far from saturation for mutants with this phenotype (S.
L’Hernault, personal communication; S. Ward, personal
communication). Not surprisingly, the majority of spe or fer
mutations identified thus far alter or arrest sperm develop-
ment. The study of C. elegans spe and fer genes has helped
provide important insights into the nature of cellular mor-
phogenesis, asymmetric cell divisions, cellular motility,
signal transduction, the regulation of lifespan, and cell-
cycle regulation in sperm development (L’Hernault and
Roberts, 1995; L’Hernault, 1997). Only more recently have
worms been used as a model system for fertilization. A
subset of the spe and fer mutations are particularly relevant
to fertilization (spe-9, spe-13, spe-19, spe-36, spe-38, and
fer-14). Mutations in any of these genes cause worms to
produce sperm with normal morphology and motility that
cannot fertilize oocytes even after gamete contact (Singson
et al., 1998; L’'Hernault et al., 1988; A. Singson and S.
L’Hernault, unpublished observations). Therefore, these
genes are specifically required for sperm function at fertili-
zation.

spe-9

As introduced above, spe-9 mutants were originally se-
lected as hermaphrodites that cannot produce self-progeny
but do produce oocytes that can be fertilized by wild-type
male-derived sperm (Singson et al., 1998; L’'Hernault et al.,
1988). Male worms that are homozygous for mutations in
spe-9 are also sterile. The morphology of spe-9 mutant
sperm isolated from both male and hermaphrodite worms is
indistinguishable from wild-type sperm when examined by
light and electron microscopy. Sperm from spe-9 mutants
undergo normal spermiogenesis both in vivo and in vitro.
Furthermore, spe-9 mutant sperm can be seen in contact
with oocytes passing through the spermathecae without
fertilization taking place. Finally, spe-9 mutant sperm can
induce wild-type levels of ovulation, are motile, can locate
the spermathecae, and can participate in sperm competition
(see below; Singson et al., 1999, 1998).

The spe-9 gene encodes a sperm-specific transmembrane
protein that consists primarily of 10 epidermal growth factor
(EGF)-like repeats in its extracellular domain (Singson et al.,
1998). A common feature of proteins that include EGF-like
motifs is their involvement in extracellular functions such as
adhesive and ligand-receptor interactions (Davis, 1990). More-
over, the SPE-9 EGF-like repeats are most similar to those
seen in the extracellular domains of the Notch/LIN-12/GLP-1
family of transmembrane receptors and their ligands (Singson
et al., 1998). This class of EGF-like repeat is a defining feature
of the Notch family of molecules (Artavanis-Tsakonas et al.,
1999). Furthermore, the overall structure of SPE-9 suggests

Andrew Singson

— sPE-9ligand
>— oocyte receptor

> oocyte

sperm

FIG. 4. A model for SPE-9 function during C. elegans fertilization.
SPE-9 on the surface of sperm interacts with a receptor on the
oocyte and mediates gamete recognition, adhesion, and/or signal-
ing during fertilization. It is not yet known if SPE-9 is localized to
a particular region of the mature sperm plasma membrane.

that it is more similar to the ligand class of these molecules
(Delta and Serrate from Drosophila, APX-1 and LAG-2 from
C. elegans, and the Jagged proteins from mammals). The
Notch pathway is known to play a role primarily in juxtacrine
cell-cell signaling that results in specific cell fate decisions
during the differentiation of many tissues in a variety of
organisms (Artavanis-Tsakonas et al., 1999). Point mutations
and an ongoing structural analysis of SPE-9 indicate that its
EGF-like motifs are critical for its biological activity (Singson
et al., 1998; S. Zannoni and A. Singson, unpublished observa-
tions). Additionally, secreted forms of the SPE-9 extracellular
domain are nonfunctional in transgenic worms. This result
supports the observation that spe-9 mutants act cell autono-
mously. In other words, spe-9 mutant sperm will never be able
to fertilize an oocyte even if they are mixed with wild-type
sperm. Preliminary immunolocalization experiments indicate
that SPE-9 localizes to the sperm plasma membrane (A.
Singson, unpublished observations). Taken together, these
data suggest that SPE-9 is involved in the specialized cell-cell
interactions required for fertilization. A simple model for
SPE-9 function is presented in Fig. 4. In this model, SPE-9
functions as a sperm ligand for an as yet unknown receptor on
the surface of the oocyte. The interaction of these two mol-
ecules would mediate gamete recognition, adhesion, and/or
signaling events required for fertilization. The confirmation of
this model will depend on the continued analysis of the spe-9
pathway and identification of the hypothesized receptor.

Other Genes With spe-9-like Mutant Phenotypes

There are a number of other genes that when mutated can
apparently lead to a spe-9-like phenotype. Since spe-9 was
the first gene of its type to be studied in depth, | will refer
to this group of genes as the spe-9 class. Although a detailed
phenotypic and molecular analysis of many of the spe-9
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class genes is still incomplete, their analysis should prove
very informative. The mutant phenotypes associated with
the spe-9 class genes suggest that their gene products could
possibly mediate several different sperm functions during
fertilization. Like spe-9, these genes could function in
gamete recognition, adhesion, and/or signaling events that
are required for fertilization. Additionally, some of the
spe-9 class genes could encode components of the cellular
machinery required for membrane fusion or egg activation.
It is also possible that some spe-9 class genes could have a
more indirect role in fertilization. For instance, these genes
could encode proteins required for the subcellular localiza-
tion of other sperm surface proteins. The sperm of many
species are known to have distinct membrane domains
associated with different sperm functions (Primakoff and
Myles, 1983). Other spe-9 class genes could encode proteins
that are required for the proper maturation or processing of
molecules more directly involved in fertilization. Several
molecules required for fertility in other systems are thought
to be cleaved or modified before they are functional (Prima-
koff and Myles, 2000; Ikawa et al., 1997). If any of the spe-9
class genes do function in the localization or maturation of
other molecules, their role should be fairly specific since
these mutant sperm accomplish most functions normally.
Finally, it should be noted that many of the functions
mentioned above might not be mutually exclusive. For
example, some cell surface molecules are known to have
both adhesive and signaling functions (Giancotti and Ruo-
slahti, 1999; Greenspan, 1990).

SPERM COMPETITION

The study of C. elegans reproductive biology has been
useful for related studies on the mechanism of sexual selec-
tion. These processes are important forces that influence
species survival, reproductive behavior, morphology, and
physiology (Karr and Pitnick, 1999). Worms have proven to be
particularly useful in addressing the mechanisms of sperm
competition, a major type of sexual selection.

Sperm competition in C. elegans refers to the process
whereby male-derived sperm are utilized preferentially to
fertilize oocytes over hermaphrodite-derived sperm (Ward
and Carrel, 1979). This bias in sperm utilization ensures
that outcrossing will occur in this predominately self-
fertilizing species. A landmark series of experiments by
LaMunyon and Ward have made it clear that a major
mechanism in determining paternity in C. elegans, and
probably in other nematode species, is sperm size (LaMun-
yon and Ward, 1994, 1995, 1998, 1999). Male worms seem
to invest more in their sperm in that they make larger
sperm with larger pseudopods. These larger sperm can
move more efficiently than smaller sperm and this in-
creased motility allows male-derived sperm to displace
smaller hermaphrodite-derived sperm from the spermathe-
cae. Large sperm size is particularly evident in gonochoris-
tic nematode species (males and females, a state thought to
be ancestral to hermaphroditism) where sperm competition
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between the sperm of different males may occur frequently
(LaMunyon and Ward, 1999). In C. elegans, sperm compe-
tition leads to the functional suppression of hermaphrodite
self-fertility. Sperm produced by males with any of several
different spe-9 class mutations, although unable to fertilize
oocytes, can also suppress hermaphrodite self-fertility
(Singson et al., 1999). This result leads to the somewhat
counterintuitive conclusion that sperm competition
mechanisms are independent of fertilization in C. elegans.

There are several emerging lines of evidence that suggest
that factors other than just sperm size may influence paternity
in nematodes. Recent experiments examining cross-species
inseminations have been done in which large sperm from one
species occupy the spermathecae of another species with
smaller sperm. Although species barriers may be a factor, the
large sperm did not have any impact on the utilization of the
smaller sperm (K. Hill and S. L’Hernault, unpublished obser-
vations). It has also been observed that in some reduced
fertility mutant worms, hermaphrodites have a sperm selec-
tion mechanism that can influence sperm utilization (P.
Kadandale and A. Singson, unpublished observations). Finally,
in C. briggsae, X-bearing sperm that give rise to hermaphro-
dite progeny are more competitive than nullo-X sperm that
give rise to males (LaMunyon and Ward, 1997). The nature of
these phenomena and their relationship to sperm size need to
be more fully investigated.

PERSPECTIVES

Fertilization is a process of fundamental importance in
developmental biology. Despite intense study, sperm-egg
interactions are still poorly understood at the molecular
level. C. elegans is proving to be an excellent model system
for the study of fertilization and related questions on sperm
competition. A primary advantage of studying fertilization
in worms is the ability to make mutants that affect fertility.
A group of genes has been identified that are required for
sperm function during fertilization. Characterization of
these genes should identify new components of the fertili-
zation pathway and it is likely that more genes with
functions in fertilization remain to be identified. Further-
more, not every gene required for fertilization will be sperm
specific. To date, no specific search has been conducted for
mutants that affect egg function at fertilization. It is pos-
sible that this type of mutant was isolated and discarded in
screens for maternal effect lethals (D. Shakes, personal
communication). Promising new screening strategies and
technologies such as RNA interference (RNAIi) may make
this type of screen feasible. Additionally, modifier screens
starting with mutant sperm genes may lead to the identifi-
cation of important egg proteins. For instance, new muta-
tions that suppress the sterility of spe-9 mutants may help
to identify an egg receptor. Finally, with the worm genome
sequenced, candidate gene and reverse genetic approaches
can be applied to questions of fertility.

There are a number of fundamental questions concerning
worm reproductive biology that still remain unresolved. For
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example, the signal(s) that attracts sperm to the spermathe-
cae, the precise way that sperm and egg first meet, and the
nature of the block to polyspermy are unknown. The
development of new experimental approaches will help to
answer these questions. For instance, in vitro fertilization
has not yet been achieved in C. elegans (Goldstein and Hird,
1996; S. L’Hernault, personal communication). In vitro
fertilization assays could help assign function to newly
discovered molecules. The development of new techniques
that complement existing approaches for the study of worm
fertilization is one of the major challenges of the future. As
the molecular nature of fertilization in C. elegans is re-
vealed, it should have implications for parasitic nematode
control (Scott, 1996), complement studies in other systems,
and provide new insights into how sperm and egg come
together to initiate the life of a new individual.
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