33 research outputs found

    Measurement of CP asymmetries and branching fraction ratios of B− decays to two charm mesons

    Get PDF
    The CPCP asymmetries of seven BB^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9fb19\text{fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D0D^{*0} or DsD^{*-}_s meson are analysed by reconstructing only the D0D^0 or DsD^-_s decay products. This paper presents the first measurement of ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.The CP asymmetries of seven B^{−} decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb1^{−1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D0^{*0} or Ds {D}_s^{\ast -} meson are analysed by reconstructing only the D0^{0} or Ds {D}_s^{-} decay products. This paper presents the first measurement of ACP \mathcal{A} ^{CP}(B^{−}Ds {D}_s^{\ast -} D0^{0}) and ACP \mathcal{A} ^{CP}(B^{−}Ds {D}_s^{-} D0^{∗0}), and the most precise measurement of the other five CP asymmetries. There is no evidence of CP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.[graphic not available: see fulltext]The CPCP asymmetries of seven BB^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb19\text{ fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D0D^{*0} or DsD^{*-}_s meson are analysed by reconstructing only the D0D^0 or DsD^-_s decay products. This paper presents the first measurement of ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(BDsD0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured

    Distribution patterns of 104 kDa stress-associated protein in rice

    No full text
    10.1023/A:1006099715375Plant Molecular Biology376911-919PMBI

    Influence of a PbS layer on the optical and electronic properties of ZnO@PbS core–shell nanorod thin films

    No full text
    In the present study, ZnO@PbS core–shell thin film based solar cells have been fabricated by the successive ionic layer absorption and reaction method (SILAR). The assembly consists of zinc oxide (ZnO) nanorods as the core and PbS as the shell, and the thickness of the PbS layer was controlled by varying the number of dipping cycles. The varied PbS layer thicknesses resulted in the shifting of the absorption of ZnO@PbS from the ultraviolet region to the visible region. The PbS layer suppressed the visible emission of ZnO and enhanced the charge separation at the interface. By introducing PbS layers, the charge generation and separation within the ZnO@PbS core–shell nanorod has been improved. The PbS shell on ZnO nanorods improved the short-circuit current (Jsc), open circuit voltage (Voc) and fill factor (FF) that resulted in an enhancement of the photovoltaic device efficiency. A maximum power conversion efficiency of 6.59% was achieved with ten layers of PbS in the ZnO@PbS@dye thin film based solar cell

    Cruveilhier Baumgarten syndrome with giant paraumbilical vein

    No full text

    Minor Ent

    No full text

    Reviewing the use of chitosan and polydopamine for electrochemical sensing

    Get PDF
    Biopolymers possess highly favorable properties for electrochemical biosensing such as their inherent biocompatibility, inexpensive nature, and strong interfacial adhesion. In this minireview, we will focus on chitosan and polydopamine, two of the most commonly used biopolymers, for electrochemical sensing applications. Chitosan is a polysaccharide that exhibits high chemical resistance, offers straightforward modification and cross-linking, and possesses antibacterial properties and mucoadhesion. Polydopamine has the benefit of universal adhesion, in addition to the ability to form self-assembled structures. We will demonstrate how the unique structural and electrochemical features of these biopolymers can be used in a range of electrochemical biosensing platforms
    corecore