62 research outputs found

    Residues of Pesticides and Herbicides in Soils from Agriculture Areas of Delhi Region, India

    Get PDF
    This paper presents the residue levels of organochlorine, organophosphate pesticides and herbicides in agricultural soils from Delhi region. Among OCPs, HCH, DDT endosulphan and dieldrin ranged between <0.01-104.14 ng g-1, <0.01-15.79 ng g-1, <0.01-7.57 ng g-1 and <0.01-2.38 ng g-1, respectively. The concentration of OPPs ranged from <0.01-20.95 ng g-1, ND-3.92 ng g-1, ND-31.73 ng g-1, ND-6.46 ng g-1 and ND-6.46 ng g-1 for phosphomidon, monocrotophos, chlorpyriphos, quinolphos and ethion, respectively. Pendimethalin (0.27 ng g-1) was the dominant herbicides followed by butachlor (0.19 ng g-1), and fluchloralin (0.05 ng g-1). Data showed the region was contaminated by technical DDT and technical HCH mixture. The study reveals that the level of some organochlorine pesticides in agricultural soils is a matter of concern for future food chain accumulation and human health so; regular investigation of pesticide residues is recommended on soil health and contamination levels. Keywords: pesticides, herbicides, agricultural soil, Delhi, Indi

    MOLECULAR DETECTION OF HUMAN RHINOVIRUS IN RESPIRATORY SAMPLES OF SWINE FLU NEGATIVE NORTH INDIAN CHILDREN WITH FLU-LIKE ILLNESS

    Get PDF
    Objectives: Flu-like illness may also be caused by different respiratory viruses other than influenza. Human rhinovirus (HRV) shows almost flu-likesymptoms. The purpose of this study is the molecular detection of HRV in throat swab of swine flu negative North Indian children during the years2012 and 2013. Reverse transcriptase (RT) - polymerase chain reaction (PCR) amplification of 5'non-coding region (NCR) was used for HRV detectionfollowed by cell culture isolation of HRV.Methods: PCR confirmed swine flu negative throat swab samples were collected from the Department of Microbiology, Sanjay Gandhi Post GraduateInstitute of Medical Sciences, Lucknow, Uttar Pradesh, India. The RNA isolation of samples was done using the QIAampViral RNA Mini Kit (Qiagen),followed by single step RT-PCR amplification (AgPath-ID, Life Technologies). All PCR positive HRV samples were cell cultured in HeLa and HEp-2 celllines for viral isolation.®Results: 135 swine flu negative throat swab samples were examined. Out of which 34 samples (25.2%) were found HRV positive by RT-PCR, while onlyfour samples (11.8%) were culture positive on HeLa cell line. Younger children (0-4 year) were found more susceptible to HRV infection. This studyindicated the highest prevalence of HRV (37.0%) during the months (September-October) of the Autumn season in 2012 and 57% in Winter-springseason (February-March) during 2013.Conclusion: HRV may be a cause of flu-like symptoms in swine flu suspected North Indian children with a higher rate during Autumn and Springseason. Molecular detection of HRV using RT-PCR is more sensitive than cell culture assay.Keywords: Human rhinovirus, Swine flu, Influenza-like illness, Lower respiratory tract infections

    Distribution of polychlorinated biphenyls in agricultural soils from NCR, Delhi, India

    Get PDF
    ABSTRACT Twenty eight polychlorinated biphenyls (PCBs) congeners including twelve dioxin-lik

    Tolerance to post-emergence herbicide Imazethapyr in chickpea

    Get PDF
    The present research work aimed at identification of sources of tolerance to herbicide Imazethapyr for their possible utilization in development of herbicide tolerant chickpea. Sixty five genotypes (55 desi and 10 kabuli) screened included accessions from ICRISAT core collection, advanced breeding lines and cultivars. The herbicide tolerance score ranged from 1.9 to 5.0. Nine tolerant to moderately tolerant and three susceptible genotypes were further evaluated under control and sprayed condition. Genotype x environment interactions were observed for days to 50% flowering, NDVI, days to maturity, seed yield, biomass, harvest index, 100-seed weight and branched chain amino acids (BCAA) viz., valine, leucine and isoleucine content. Highly significant reduction in seed yield was observed in all the genotypes except ICCV 10, ICCL 82104 and ICC 1710 as revealed by pairwise comparison of means using Tukey's test. The spraying of herbicide reduced the total biomass production. Analysis of BCAA content in sample revealed non-significant differences for percent valine content in ICCIL 04001, ICCV 00305, ICCV 96003 and ICCL 82104, for isoleucine content in all the genotypes except, ICCV 3 and ICCV 96003 and for leucine content in case of ICCV 03407, ICCIL 04001, ICCV 10, ICCV 96003, ICC 1710, ICCV 00108 and ICCL 82104. The genotypes tolerant to post-emergence herbicide Imazethapyr identified based on non-significant reduction in the yield attributes and BCAA content in the sample were ICC 82104, ICCV 10, ICCV 96003, ICC 00305 and ICC 1710. These genotypes can be used to study the genetics of herbicide tolerance in chickpea and in breeding programs for developing lines with tolerance to post-emergence herbicide Imazethapyr

    High resolution mapping of QTLs for fruit color and firmness in Amrapali/Sensation mango hybrids

    Get PDF
    IntroductionMango (Mangifera indica L.), acclaimed as the ‘king of fruits’ in the tropical world, has historical, religious, and economic values. It is grown commercially in more than 100 countries, and fresh mango world trade accounts for ~3,200 million US dollars for the year 2020. Mango is widely cultivated in sub-tropical and tropical regions of the world, with India, China, and Thailand being the top three producers. Mango fruit is adored for its taste, color, flavor, and aroma. Fruit color and firmness are important fruit quality traits for consumer acceptance, but their genetics is poorly understood.MethodsFor mapping of fruit color and firmness, mango varieties Amrapali and Sensation, having contrasting fruit quality traits, were crossed for the development of a mapping population. Ninety-two bi-parental progenies obtained from this cross were used for the construction of a high-density linkage map and identification of QTLs. Genotyping was carried out using an 80K SNP chip array.Results and discussionInitially, we constructed two high-density linkage maps based on the segregation of female and male parents. A female map with 3,213 SNPs and male map with 1,781 SNPs were distributed on 20 linkages groups covering map lengths of 2,844.39 and 2,684.22cM, respectively. Finally, the integrated map was constructed comprised of 4,361 SNP markers distributed on 20 linkage groups, which consisted of the chromosome haploid number in Mangifera indica (n =20). The integrated genetic map covered the entire genome of Mangifera indica cv. Dashehari, with a total genetic distance of 2,982.75 cM and an average distance between markers of 0.68 cM. The length of LGs varied from 85.78 to 218.28 cM, with a mean size of 149.14 cM. Phenotyping for fruit color and firmness traits was done for two consecutive seasons. We identified important consistent QTLs for 12 out of 20 traits, with integrated genetic linkages having significant LOD scores in at least one season. Important consistent QTLs for fruit peel color are located at Chr 3 and 18, and firmness on Chr 11 and 20. The QTLs mapped in this study would be useful in the marker-assisted breeding of mango for improved efficiency

    CHSI costing study-Challenges and solutions for cost data collection in private hospitals in India

    Get PDF
    INTRODUCTION: Ayushman Bharat Pradhan Mantri Jan Aarogya Yojana (AB PM-JAY) has enabled the Government of India to become a strategic purchaser of health care services from private providers. To generate base cost evidence for evidence-based policymaking the Costing of Health Services in India (CHSI) study was commissioned in 2018 for the price setting of health benefit packages. This paper reports the findings of a process evaluation of the cost data collection in the private hospitals. METHODS: The process evaluation of health system costing in private hospitals was an exploratory survey with mixed methods (quantitative and qualitative). We used three approaches-an online survey using a semi-structured questionnaire, in-depth interviews, and a review of monitoring data. The process of data collection was assessed in terms of time taken for different aspects, resources used, level and nature of difficulty encountered, challenges and solutions. RESULTS: The mean time taken for data collection in a private hospital was 9.31 (± 1.0) person months including time for obtaining permissions, actual data collection and entry, and addressing queries for data completeness and quality. The longest time was taken to collect data on human resources (30%), while it took the least time for collecting information on building and space (5%). On a scale of 1 (lowest) to 10 (highest) difficulty levels, the data on human resources was the most difficult to collect. This included data on salaries (8), time allocation (5.5) and leaves (5). DISCUSSION: Cost data from private hospitals is crucial for mixed health systems. Developing formal mechanisms of cost accounting data and data sharing as pre-requisites for empanelment under a national insurance scheme can significantly ease the process of cost data collection

    A framework to assess the quality and impact of bioinformatics training across ELIXIR.

    Get PDF
    ELIXIR is a pan-European intergovernmental organisation for life science that aims to coordinate bioinformatics resources in a single infrastructure across Europe; bioinformatics training is central to its strategy, which aims to develop a training community that spans all ELIXIR member states. In an evidence-based approach for strengthening bioinformatics training programmes across Europe, the ELIXIR Training Platform, led by the ELIXIR EXCELERATE Quality and Impact Assessment Subtask in collaboration with the ELIXIR Training Coordinators Group, has implemented an assessment strategy to measure quality and impact of its entire training portfolio. Here, we present ELIXIR's framework for assessing training quality and impact, which includes the following: specifying assessment aims, determining what data to collect in order to address these aims, and our strategy for centralised data collection to allow for ELIXIR-wide analyses. In addition, we present an overview of the ELIXIR training data collected over the past 4 years. We highlight the importance of a coordinated and consistent data collection approach and the relevance of defining specific metrics and answer scales for consortium-wide analyses as well as for comparison of data across iterations of the same course

    Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.)

    Get PDF
    A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2–20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here, therefore, has a total of 300 loci including 126 GMM loci and spans 766.56 cM, with an average inter-marker distance of 2.55 cM. In summary, this is the first report on the development of large-scale genic markers including development of easily assayable markers and a transcript map of chickpea. These resources should be useful not only for genome analysis and genetics and breeding applications of chickpea, but also for comparative legume genomics
    corecore