31 research outputs found

    Role of tautomerism in RNA biochemistry

    Get PDF
    Heterocyclic nucleic acid bases and their analogs can adopt multiple tautomeric forms due to the presence of multiple solvent-exchangeable protons. In DNA, spontaneous formation of minor tautomers has been speculated to contribute to mutagenic mispairings during DNA replication, whereas in RNA, minor tautomeric forms have been proposed to enhance the structural and functional diversity of RNA enzymes and aptamers. This review summarizes the role of tautomerism in RNA biochemistry, specifically focusing on the role of tautomerism in catalysis of small self-cleaving ribozymes and recognition of ligand analogs by riboswitches. Considering that the presence of multiple tautomers of nucleic acid bases is a rare occurrence, and that tautomers typically interconvert on a fast time scale, methods for studying rapid tautomerism in the context of nucleic acids under biologically relevant aqueous conditions are also discussed.National Institutes of Health (U.S.) (Grant P01 CA26731)National Institutes of Health (U.S.) (Grant R37 CA080024)National Institutes of Health (U.S.) (Grant P30 ES002109)National Institutes of Health (U.S.) (Training Grant T32 ES007020

    The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond

    Get PDF
    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli “adaptive response” protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1–8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.National Institutes of Health (U.S.) (Grant P01 CA26731)National Institutes of Health (U.S.) (Grant R37 CA080024)National Institutes of Health (U.S.) (Grant P30 ES002109

    Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity

    Get PDF
    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2′-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino–imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol–imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pK[subscript a] of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation.National Science Foundation (U.S.) (Grant CHE-1212557)National Science Foundation (U.S.) (Grant CHE-1414486)National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant P41-EB015871)National Institutes of Health (U.S.) (Traineeship T32 ES007020)National Institutes of Health (U.S.) (Grant CA080024)National Institutes of Health (U.S.) (Grant CA26731

    Direct Observation of Multiple Tautomers of Oxythiamine and their Recognition by the Thiamine Pyrophosphate Riboswitch

    Get PDF
    Structural diversification of canonical nucleic acid bases and nucleotide analogues by tautomerism has been proposed to be a powerful on/off switching mechanism allowing regulation of many biological processes mediated by RNA enzymes and aptamers. Despite the suspected biological importance of tautomerism, attempts to observe minor tautomeric forms in nucleic acid or hybrid nucleic acid-ligand complexes have met with challenges due to the lack of sensitive methods. Here, a combination of spectroscopic, biochemical, and computational tools probed tautomerism in the context of an RNA aptamer-ligand complex; studies involved a model ligand, oxythiamine pyrophosphate (OxyTPP), bound to the thiamine pyrophosphate (TPP) riboswitch (an RNA aptamer) as well as its unbound nonphosphorylated form, oxythiamine (OxyT). OxyTPP, similarly to canonical heteroaromatic nucleic acid bases, has a pyrimidine ring that forms hydrogen bonding interactions with the riboswitch. Tautomerism was established using two-dimensional infrared (2D IR) spectroscopy, variable temperature FTIR and NMR spectroscopies, binding isotope effects (BIEs), and computational methods. All three possible tautomers of OxyT, including the minor enol tautomer, were directly identified, and their distributions were quantitated. In the bound form, BIE data suggested that OxyTPP existed as a 4′-keto tautomer that was likely protonated at the N1′-position. These results also provide a mechanistic framework for understanding the activation of riboswitch in response to deamination of the active form of vitamin B1 (or TPP). The combination of methods reported here revealing the fine details of tautomerism can be applied to other systems where the importance of tautomerism is suspected.National Institutes of Health (U.S.) (Grant CA080024)National Institutes of Health (U.S.) (Grant CA26731)National Institutes of Health (U.S.) (Grant ES002109)National Institutes of Health (U.S.) (Grant ES007020)National Science Foundation (U.S.) (Grant CHE-1212557)Massachusetts Institute of Technology. Center for Environmental Health Sciences (National Institutes of Health (U.S.) Center Grant P30-ES002109)Massachusetts Institute of Technology. Laser Biomedical Research Center (National Institutes of Health (U.S.) Center Grant P41-EB015871)National Institutes of Health (U.S.) (Traineeship T32 ES007020)Massachusetts Institute of Technology (Poitras Pre-Doctoral Fellowship

    Mechanism of Repair of Acrolein- and Malondialdehyde-Derived Exocyclic Guanine Adducts by the α-Ketoglutarate/Fe(II) Dioxygenase AlkB

    Get PDF
    The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M[subscript 1]dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M[subscript 1]dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M[subscript 1]dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH[subscript 4]. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA.National Institutes of Health (U.S.) (Grant R01 CA080024)National Institutes of Health (U.S.) (Grant R01 CA26731)National Institutes of Health (U.S.) (Center Grant P30 ES02109)National Institutes of Health (U.S.) (Training Grant T32 ES007020

    Generalized large optics fabrication multiplexing

    Get PDF
    High precision astronomical optics are manufactured through deterministic computer controlled optical surfacing processes, such as subaperture small tool polishing, magnetorheological finishing, bonnet tool polishing, and ion beam figuring. Due to the small tool size and the corresponding tool influence function, large optics fabrication is a highly time-consuming process. The framework of multiplexed figuring runs for the simultaneous use of two or more tools is presented. This multiplexing process increases the manufacturing efficiency and reduces the overall cost using parallelized subaperture tools

    Transition-State Structure of Human 5-Methylthioadenosine Phosphorylase

    No full text

    Transition-State Analysis of S. pneumoniae 5-Methylthioadenosine Nucleosidase

    No full text

    Role of tautomerism in RNA biochemistry

    No full text

    Lewis Acid Catalyzed Annulation of Nitrones with Oxiranes, Aziridines, and Thiiranes

    No full text
    A highly selective Lewis acid catalyzed annulation of three-membered heterocycles with nitrones has been developed. Oxiranes, aziridines, and thiiranes were used as substrates for the synthesis of various six-membered heterocycles using Al or In catalysts. This catalytic protocol demonstrates a broad substrate scope and provides access to new structural motifs in high yields and in excellent selectivity under mild reaction conditions
    corecore