1,507 research outputs found

    Frequency Control of Multi-Pulse 2-micron Laser Transmitter for Atmospheric Carbon Dioxide Measurement

    Get PDF
    Laser sources with highly stabilized emission wavelength is of paramount importance for a long term atmospheric carbon dioxide (CO2) measurement from a space platform. Integrated Path Differential Absorption (IPDA) lidar is a promising instrument for such a task. The design of a laser transmitter, with emphasis on the method used to control and select several wavelengths, is presented. This multi-pulsed, injection seeded, 2-m transmitter uses a Ho:Tm:YLF laser crystal which has matching emission to the absorption of CO2 in the R30 spectroscopic area. The injection seeded laser produces triple single longitudinal mode transform limited line width pulses with a total of 80 mJ at a repetition rate of 50 Hz

    MCT Avalanche Photodiode Detector for Two-Micron Active Remote Sensing Applications

    Get PDF
    Mercury Cadmium Telluride electron initiated avalanche photodiodes demonstrated a breakthrough in lidar active remote sensing technology. A lidar detection system, based on an array of these devices, was integrated and characterized for 2-m applications. Characterization experiments were focused on evaluating the dark current, gain and responsivity variations with bias voltage. Quantum efficiency and input dynamic range including noise-equivalent-power and maximum detectable power, were calculated from these results. Operating the detection system using four pixels at 77.6 K, 12 V bias resulted in a current responsivity of 615.8 A/W and a voltage responsivity of 1.45 GV/W. Minimum detectable power of 14 pW was obtained, which is equivalent to 5.7 fW/Hz(exp 1/2) noise-equivalent-power, indicating an average noise-equivalent-power of 1.4 fW/Hz(exp 1/2) per pixel. Work is in progress to integrate and validate this detection system using a newly developed triple-pulse integrated path differential absorption lidar for simultaneous and independent atmospheric measurements of water vapor and carbon dioxide

    Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application

    Get PDF
    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed

    Excitonic Correlations in the Intermetallic Fe2VAl

    Full text link
    The intermetallic compound Fe2VAl looks non-metallic in transport and strongly metallic in thermodynamic and photoemission data. It has in its band structure a highly differentiated set of valence and conduction bands leading to a semimetallic system with a very low density of carriers. The pseudogap itself is due to interaction of Al states with the d orbitals of Fe and V, but the resulting carriers have little Al character. The effects of generalized gradient corrections to the local density band structure as well spin-orbit coupling are shown to be significant, reducing the carrier density by a factor of three. Doping of this nonmagnetic compound by 0.5 electrons per cell in a virtual crystal fashion results in a moment of 0.5 bohr magnetons and destroys the pseudogap. We assess the tendencies toward formation of an excitonic condensate and toward an excitonic Wigner crystal, and find both to be unlikely. We propose a model is which the observed properties result from excitonic correlations arising from two interpenetrating lattices of distinctive electrons (e_g on V) and holes (t_2g on Fe) of low density (one carrier of each sign per 350 formula units).Comment: 8 2-column pages, 8 postscript figure

    Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements

    Get PDF
    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earths climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-m band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed

    Impact of Preexisting Adenovirus Vector Immunity on Immunogenicity and Protection Conferred with an Adenovirus-Based H5N1 Influenza Vaccine

    Get PDF
    The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (<520 virus-neutralization titer) induced by priming mice with up to 107 plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 108 p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 109 p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines

    Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Get PDF
    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity
    • …
    corecore