4,404 research outputs found

    Emission Characteristics of the Projectile Fragments at Relativistic Energy

    Full text link
    A projectile (84^Kr_36) having kinetic energy around 1 A GeV was used to expose NIKFI BR-2 emulsion target. A total of 700 inelastic events are used in the present studies on projectile fragments. The emission angle of the projectile fragments are strongly affected by charge of the other projectile fragments emitted at same time with different emission angle is observed. The angular distribution studies show symmetrical nature for lighter charge projectile fragments. The symmetrical nature decreased with the charge of projectile fragments. At ~4o of emission angle for double charge projectile fragments, the momentum transfer during interaction is similar for various target species of emulsion were observed. We also observed a small but significant amplitude peaks on both side of the big peak for almost all light charge projectile fragments having different delta angle values. It reflects that there are few percent of projectile fragments that are coming from the decay of heavy projectile fragments or any other process.Comment: 32 pages, 17 Figure

    Influence of carbon and nitrogen on electronic structure and hyperfine interactions in fcc iron-based alloys

    Full text link
    Carbon and nitrogen austenites, modeled by Fe8N and Fe8C superstructures are studied by full-potential LAPW method. Structure parameters, electronic and magnetic properties as well as hyperfine interaction parameters are obtained. Calculations prove that Fe-C austenite can be successfully modeled by ordered Fe8C superstructure. The results show that chemical Fe-C bond in Fe8C has higher covalent part than in Fe8N. Detailed analysis of electric field gradient formation for both systems is performed. The calculation of electric field gradient allow us to carry out a good interpretation of Moessbauer spectra for Fe-C and Fe-N systems.Comment: 8 pages, 3 figures, IOP-style LaTeX, submitted to J. Phys. Condens. Matte

    HH-IPG: Leveraging Inter-Packet Gap Metrics in P4 Hardware for Heavy Hitter Detection

    Get PDF
    The research community has recently proposed several solutions based on modern programmable switches to detect entirely in the data plane the flows exceeding pre-determined thra eshold in a time window, i.e., Heavy Hitters (HH). This is commonly achieved by dividing the network stream into fixed time slots and identifying each separately without considering the traffic trends from previous intervals. In this work, we show that using specified time windows can lead to high inaccuracies. We make a case for rethinking how switches analyze the incoming packets and propose to leverage per-flow Inter Packet Gap (IPG) analytics instead of using flow counters for HH detection. We propose an algorithm and present a P4 pipeline design using this new metric in mind. We implement our solution on P4 hardware and experimentally evaluate it against real traffic traces. We show that our results are more accurate than related work by up to 20% while reducing the control channel overhead by up to two orders of magnitude. Finally, we showcase a QoS-oriented application of the proposed dataplane-only IPG-based HH detection in a mobile network scenario

    Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B

    Get PDF
    Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union

    Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2

    Full text link
    We have performed low-temperature specific heat CC and thermal conductivity κ\kappa measurements on the Ni-pnictide superconductors BaNi2_2As2_2 (TcT_\mathrm{c}=0.7 K and SrNi2_2P2_2 (TcT_\mathrm{c}=1.4 K). The temperature dependences C(T)C(T) and κ(T)\kappa(T) of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual κ\kappa for BaNi2_2As2_2 rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba0.6_{0.6}La0.4_{0.4}Ni2_2As2_2 shows a mild suppression of TcT_\mathrm{c} and Hc2H_\mathrm{c2} relative to BaNi2_2As2_2.Comment: 5 pages, 3 figures, to be published in J. Phys.: Conf. Se

    Risk stratification of cardiovascular patients using a novel classification tree induction algorithm with non-symmetric entropy measures

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-100).Risk stratification allows clinicians to choose treatments consistent with a patient's risk profile. Risk stratification models that integrate information from several risk attributes can aid clinical decision making. One of the technical challenges in developing risk stratification models from medical data is the class imbalance problem. Typically the number of patients that experience a serious medical event is a small subset of the entire population. The goal of my thesis work is to develop automated tools to build risk stratification models that can handle unbalanced datasets and improve risk stratification. We propose a novel classification tree induction algorithm that uses non-symmetric entropy measures to construct classification trees. We apply our methods to the application of identifying patients at high risk of cardiovascular mortality. We tested our approach on a set of 4200 patients who had recently suffered from a non-ST-elevation acute coronary syndrome. When compared to classification tree models generated using other measures proposed in the literature, the tree models constructed using non-symmetric entropy had higher recall and precision. Our models significantly outperformed models generated using logistic regression - a standard method of developing multivariate risk stratification models in the literature.by Anima Singh.S.M

    Controlled synthesis and characterization of templated, magneto-responsive nanoparticle structures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2006.Includes bibliographical references.Magnetic fluids are colloidal dispersions of magnetic nanoparticles that are stable with respect to gravitational and moderate magnetic fields because of their small particle size, and to unbounded aggregation due to their surface coatings. The interaction between individual magnetic nanoparticles in a suspension is negligible even under applied magnetic fields. However, when they are incorporated into composite structures they act in concert to provide the desired magnetic response. The dynamic response of such composite structures can be exploited in a wide range of applications including high energy absorption scenarios. The goal of this thesis was to use magnetic nanoparticles as building blocks to create 3D magneto-responsive nanostructures and manipulate their behavior in the presence of an external magnetic field for various applications. Two approaches were followed to create composite structures. In the first approach, rigid magnetic chains composed of magnetic nanoparticles were synthesized. The layer-by-layer technique was used to coat polystyrene beads with magnetic nanoparticles to create novel core-shell structures. The behavior of these structures under an applied magnetic field was modeled and the results were verified experimentally.(cont.) These magnetic polystyrene beads were then aligned within a microchannel by an external magnetic field and linked together using sol gel chemistry to yield rigid superparamagnetic chains. Linking the magnetically aligned beads with a flexible linker yielded flexible superparamagnetic chains. These permanently-linked magnetic chains can be used as micro-mixers in a microfluidic channel under a rotating magnetic field. The reorientation dynamics of these chains under an external magnetic field was modeled. Microcontact printing was employed to tether the flexible chains in a desired pattern on a glass surface. Tethered flexible magnetic chains have potential applications in microfluidics and separations. Rings and icosahedra shaped electrostatically charged templates were generated from the self-assembly of mixtures of surfactants in an aqueous solution and were investigated for their application in the synthesis of non-spherical magnetic structures. The magnetic response of the magnetic rings was modeled and the results were verified experimentally. "Templateless" aggregation of magnetic nanoparticles using radiation crosslinking was also investigated.(cont.) Aqueous magnetic nanoparticles stabilized with a radiation crosslinkable polymer resulted in magnetic gels at high dosage amount of the ionizing radiation. Magnetic gels can have potential applications in biological areas. Different size monodisperse magnetic nanoparticles were synthesized via an organic synthesis route, and the effect of size on the Nel relaxation behavior of the fixed magnetic nanoparticles was investigated. Theoretical analysis suggested that incorporation of magnetic nanoparticles with high relaxation times in a matrix can be used to absorb energy. The energy penalty associated with the deflection of the magnetic dipole against the field should result in the stiffening of the matrix. This was demonstrated both experimentally and theoretically. Drop ball impact test was performed on foam embedded with infinite Nel relaxation nanoparticles and the deflection profile of the foam was monitored both in the presence and in the absence of a magnetic field. The deflection of the foam by the ball was modeled to calculate the strain profile developed by the foam, which was then converted into the equivalent amount of energy absorbed by the foam and the magnetic nanoparticles.(cont.) A method of electrospinning was used to encapsulate magnetic nanoparticles in a polymeric matrix to create field responsive nanofibers for various applications. The magnetization properties of the nanofibers were also characterized and their behavior under an applied magnetic field was modeled.by Harpreet Singh.Ph.D
    • …
    corecore