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Abstract

Magnetic fluids are colloidal dispersions of magnetic nanoparticles that are stable with
respect to gravitational and moderate magnetic fields because of their small particle size, and to
unbounded aggregation due to their surface coatings. The interaction between individual
magnetic nanoparticles in a suspension is negligible even under applied magnetic fields.
However, when they are incorporated into composite structures they act in concert to provide the
desired magnetic response. The dynamic response of such composite structures can be exploited
in a wide range of applications including high energy absorption scenarios. The goal of this
thesis was to use magnetic nanoparticles as building blocks to create 3D magneto-responsive
nanostructures and manipulate their behavior in the presence of an external magnetic field for
various applications.

Two approaches were followed to create composite structures. In the first approach, rigid
magnetic chains composed of magnetic nanoparticles were synthesized. The layer-by-layer
technique was used to coat polystyrene beads with magnetic nanoparticles to create novel core-
shell structures. The behavior of these structures under an applied magnetic field was modeled
and the results were verified experimentally. These magnetic polystyrene beads were then aligned
within a microchannel by an external magnetic field and linked together using sol gel chemistry
to yield rigid superparamagnetic chains. Linking the magnetically aligned beads with a flexible
linker yieldedflexible superparamagnetic chains. These permanently-linked magnetic chains can
be used as micro-mixers in a microfluidic channel under a rotating magnetic field. The
reorientation dynamics of these chains under an external magnetic field was modeled.
Microcontact printing was employed to tether the flexible chains in a desired pattern on a glass
surface. Tethered flexible magnetic chains have potential applications in microfluidics and
separations.

Rings and icosahedra shaped electrostatically charged templates were generated from the
self-assembly of mixtures of surfactants in an aqueous solution and were investigated for their
application in the synthesis of non-spherical magnetic structures. The magnetic response of the
magnetic rings was modeled and the results were verified experimentally. "Templateless"
aggregation of magnetic nanoparticles using radiation crosslinking was also investigated.
Aqueous magnetic nanoparticles stabilized with a radiation crosslinkable polymer resulted in
magnetic gels at high dosage amount of the ionizing radiation. Magnetic gels can have potential
applications in biological areas.



Different size monodisperse magnetic nanoparticles were synthesized via an organic
synthesis route, and the effect of size on the N6el relaxation behavior of the fixed magnetic
nanoparticles was investigated. Theoretical analysis suggested that incorporation of magnetic
nanoparticles with high relaxation times in a matrix can be used to absorb energy. The energy
penalty associated with the deflection of the magnetic dipole against the field should result in the
stiffening of the matrix. This was demonstrated both experimentally and theoretically. Drop ball
impact test was performed on foam embedded with infinite N6el relaxation nanoparticles and the
deflection profile of the foam was monitored both in the presence and in the absence of a
magnetic field. The deflection of the foam by the ball was modeled to calculate the strain profile
developed by the foam, which was then converted into the equivalent amount of energy absorbed
by the foam and the magnetic nanoparticles. A method of electrospinning was used to encapsulate
magnetic nanoparticles in a polymeric matrix to create field responsive nanofibers for various
applications. The magnetization properties of the nanofibers were also characterized and their
behavior under an applied magnetic field was modeled.
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Chapter 1

Introduction

1.1 Motivation and Approach

Over the past decade, there has been a surge of interest in nanomaterials, which

include structures with at least one dimension under 100 nm. The ability to control the

composition, structure, properties and function of materials with manipulability on the

nanometer scale can lead to the production of nanomaterials that exhibit interesting

properties, which may be applicable in broadly ranging domains such as chemistry,

electronics, sensors, and biotechnology [1]. A major hurdle in the application of

nanomaterials is the limited number of strategies available to assemble them into

macrostructures that can be physically handled. The aim of the research presented in this

thesis is to develop techniques to bridge this gap between the nanoworld and the physical

world - to create macrostructures which can be physically manipulated while still

exhibiting the properties of nanomaterials.

This work focuses on using magnetic nanoparticles as building blocks to create

3D magneto-responsive structures. Magnetic nanoparticles have been the focus of

increasing interest due to their extensive technological applications in data storage [2],

magneto-optical areas [3, 4], biomedicine [5-10] and catalysis [11, 12]. Creating

complex hierarchal structures from magnetic nanoparticles can not only improve their

performance in existing applications but also extend their applications to newer fields like

microfluidics, separations, and energy absorption. We will explore all these new

applications in this research.

Nanoparticles of magnetite (FeO.Fe20O3) and maghemite yFe 203, which are the

most studied magnetic nanoparticles due to their ease of synthesis and chemical

modification, and their non-toxicity, have been used in work. Magnetite nanoparticles

(henceforth also referred to as magnetic nanoparticles) in the range of 6 nm - 20 nm can

be visualized as miniature magnets. Due to their small size, the thermal energy at room



temperature causes their dipole orientations to fluctuate (for e.g. at room temperature, the

dipole vector of an 8 nm magnetite nanoparticle changes direction after every 10-8 s). This

leads to zero effective magnetization of these nanoparticles at room temperature as

determined by averaging the dipole orientations over times, longer than their typical

fluctuations. However, in the presence of a magnetic field, the dipoles overcome these

thermal fluctuations and align with the external field. This process is reversible and the

dipole orientations are randomized once the field is removed. Hence, these particles

behave like magnets only in the presence of a magnetic field. This switching property of

magnetic nanoparticles can be used in creating "smart field responsive materials" which

will display the desired properties on demand, i.e., only when the stimulus (magnetic

field in our case) is switched on.

Figure 1-1 shows the effect of magnetization on interparticle interactions.

Magnetization, which is the measure of average magnetic moment developed by a

magnetic nanoparticle in the direction of the applied field, scales with the strength of the

applied field. At higher field strength the interparticle interaction comes into play. The

magnetized nanoparticles should form chains in the direction of the applied field to lower

the magneto-potential energy of the system. This is however not observed in an

ensemble of magnetite nanoparticles. The dipolar interactions between individual

magnetic nanoparticles in a suspension are negligible compared to the thermal energy.

The thermal energy disrupts any structure formed under an applied field. However, we

can induce aggregation of these nanoparticles in a controlled fashion to form structures

(or clusters). Individual nanoparticles held together in a cluster can act in unison to

overcome thermal energy and start aggregating in a magnetic field.

Our interest in inducing structure formations in magnetic nanoparticle system is

multifold. Magnetic structures of different shapes should behave differently in a

magnetic field and should aggregate to yield new structures. This will give us dual

control in constructing complex multilevel magnetic structures. At the first level we can

control the shape and size of the structures. At the second level the aggregation of the

structures in a magnetic field will result in higher order architecture. The field-induced

assembly of the magnetic structures should be reversible. A methodology was developed



to retain the aggregation configuration of the magnetic structures even in the absence of

the field. During the process of aggregation and assembly we can also incorporate

different materials in the magnetic structures to create novel, hybrid, higher order

assemblies.

H1  H2 > H 1  H

(a) (b) (c) (d)

Figure 1-1. Schematic of magnetite nanoparticles (a) under zero external magnetic field.
The dipoles point in random directions due to thermal fluctuations. (b) When a small
external field (H1) is applied, the dipoles develop a magnetic moment in the direction of
the field. (c) At higher fields (H2), the dipoles are saturated and point in the direction of
the field. (d) When the dipolar interaction between the particles is strong enough to
overcome the thermal energy, they should aggregate into chain like structures. This is
however not observed in a system of magnetite nanoparticles due to weak interparticle
dipolar interaction.

We have considered both template-directed assembly and in situ aggregation of

nanoparticles into ordered three-dimensional structures. In the template based assembly

we used polystyrene (PS) beads as scaffolds, and deposited magnetic nanoparticles on the

surfaces to create core-shell structures. The magnetic PS beads assembled into chains

under applied magnetic fields that could be linked permanently to form magnetic rods.

The chemistry used to link the beads governed the rod rigidity. Titania was used to link

the beads to create rigid rods while linking with poly (ethylene) glycol resulted in flexible

chains. Hollow magnetic structures were obtained by removing the core. The dynamic

and quasi-static behavior of the core-shell beads and of the linked chains under an applied

magnetic field was modeled. Preliminary studies were also performed to create more

exotic magneto-responsive structures such as rings and icosahedra. Self assembly of

mixture of surfactants was utilized to generate rings and icosahedra shaped charged



templates. The aggregation behavior of a ring shaped cluster in the presence of a

magnetic field was also analyzed theoretically.

In the in situ approach, nanoparticles were cross linked in solution phase in a

controlled fashion to create macrostrucutres. Radiation crosslinking served as an

efficient route to create different sized clusters. In this approach the nanoparticle was

first coated with the radiation cross-linkable polymer. The degree of clustering was

governed by the dosage amount and magnetic gels were synthesized using this approach.

The magneto-responsive gel can be used as a "smart actuator" or as an "artificial muscle"

[13, 14].

The effect of nanoparticle size on the magnetic response of the structures was

studied. Theory suggested that the size based magnetic effect of the nanoparticles can be

exploited in energy absorption areas. This was verified experimentally. The phenomenon

was exploited for practical applications by embedding high energy adsorbing magnetic

nanoparticles in polymeric fibers via. electrospinning.

1.2 Physics of Magnetic Nanoparticles

The structures composed of single domain ferro- or ferrimagnetic nanoparticles

have attracted considerable interest due to their significance in technological applications

as well as for the fundamental physics [15-17]. The term ferromagnetic refers to the solid

in which the magnetic moment of the individual atoms in oriented in a fixed direction.

However, when the size of the solid is on the nanometer scale (when it is a nanoparticle),

the thermal energy at the room temperature is sufficient to randomize the direction of the

net moment. The dipole orientation of the magnetic nanoparticle fluctuates at room

temperature which leads to its zero magnetization.

Magnetic fluids, which are reviewed in detail in the next section, are stable

colloidal dispersions of magnetite and maghemite nanoparticles. Under an external

magnetic field, the magnetic nanoparticle is magnetized in the direction of the field and

develops a magnetic moment ni by



m = ou,MV

where uo is the permeability of free space, M is the magnetization which is the intrinsic

property of the material and depends on the magnitude of the applied magnetic field and

V is the particle volume. At high applied magnetic field, the magnetic dipole is

completely aligned with the direction of the magnetic field (Figure 1-1). The

corresponding magnetization developed is known as saturation magnetization Ml,. This

property of the magnetic nanoparticles to behave like nano-magnets in the presence of a

field and like non-magnetic materials in the absence of the field is known as

superparamagnetism (M - 0 as H --+ 0).

101

Figure 1-2. Schematic of two interacting dipoles.

The interaction energy between the magnetic nanoparticles in the presence of a

magnetic field is given by [15]

U..dip =Ii

1 m.im- -3(r.mih)(r.mlj)
(2)

where r is the unit vector in the direction of the line joining the center of the two dipoles

(Figure 1-2) and r is the distance between the two dipoles. When the interaction between

the magnetic nanoparticles is strong they should form chain like structures to minimize

(1)



the interaction energy. Parameter X characterizes the ratio of maximum interaction energy

between two magnetic dipoles (r=2a) to that of thermal energy [ 18]

A ryo0a 3M 2

19kT

where kB is the boltzmann constant and T is the temperature. When X >>1, the dipolar

interaction between particles is strong enough to overcome the Brownian motion and

chaining is observed in the direction of the applied field. This is seen in

magnetorheological (MR) fluids which are a suspension of micro-meter sized iron

particles. Both M and a are high enough in this case and particles undergo reversible

aggregation in under an applied magnetic field. X is <<1 for magnetic nanoparticle

dispersion due to their small size and magnetization, and any structure formation is

disrupted by thermal energy. X can be increased either by increasing M or by increasing

a. M can only be increased to the saturation value of the magnetic nanoparticles Ms, by

increasing H. a can be increased up to 20 nm with the current synthesis methods. With

these limitations it is not possible to observe any appreciable structure formation in

magnetic fluids. In this thesis we have explored different methods to form clusters of

magnetic nanoparticles in a controlled fashion. This increases the effective value of a

thereby making X >>1.

1.3 Background: Magnetic Nanoparticles

1.3.1 Structure

Magnetic fluids, also known as ferrofluids, are colloidal dispersions of magnetic

nanoparticles that do not settle in gravitational or moderate magnetic fields due to their

small size and do not aggregate because of their surface coatings. The structure of a

magnetic fluid is shown schematically in Figure 1-2. The nanoparticles can be either

ferromagnetic materials such as iron or cobalt, or ferrimagnetic materials, the most

common of which is magnetite (Fe30 4) [19]. This compound is a spinel iron oxide

species with a 2:1 molar ratio of Fe ions in their III and II oxidation states [20].
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Figure 1-3. General structure of a magnetic fluid. Magnetic fluids consist of magnetic
nanoparticles dispersed in a liquid medium, with a stabilizing layer around the particles to
prevent flocculation. Each particle has a magnetic dipole but the suspension as a whole
has zero net magnetization due to dipole fluctuations.

Magnetite is not prone to oxidation, which is an advantage over magnetic fluids based on

cobalt or iron nanoparticles, which tend to lose their magnetic properties over time [21].

The typical particle size is -10 nm, which is sufficiently small to prevent sedimentation

of the particles, as Brownian motion will dominate the gravitational force and the

magnetic force from a typical handheld magnet for a particle of this size [19].

Without a stabilizing layer, the -10 nm particles in a magnetic nanoparticle would

rapidly flocculate due to the van der Waals attractive force that exists between particles in

a dispersion medium, and then settle. The van der Waals force is more important than

interparticle magnetic attraction at short range for a moderately magnetic material like

magnetite [22]. The role of the stabilizing layer is to prevent flocculation by exerting a

repulsive force between particles at short range. The nature of the stabilizing layer

depends on the dispersion medium. If the dispersion medium is a hydrocarbon, steric

stabilization from an attached surfactant or polymer is typically used [23]. In an aqueous
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magnetic fluid, where water is the dispersion medium, steric stabilization, electrostatic

stabilization, or a combination of both can be used to prevent the particles from

agglomerating. Aqueous magnetic fluids with no physical stabilizing layer have been

produced, but require careful control of the ionic strength and pH to maintain sufficient

surface charge on the bare particles for electrostatic stabilization [24]. Stabilizing agents

for electrostatic stabilization must possess functional groups that are ionized at the pH of

the magnetic fluid, while stabilizing agents for steric stabilization must be sufficiently

well solvated by the dispersion medium to induce repulsive interactions when the

stabilizing layers of two particles overlap. In addition, all stabilizing polymers or

surfactants require a means of attachment to the nanoparticles. In some cases, the

stabilizer is attached physically with a moiety that is insoluble in the dispersion medium.

For example, block copolymers that contain a soluble block for steric stabilization and an

insoluble block for physical attachment have been used successfully to stabilize magnetic

fluids [21, 25]. A far more common method of stabilizer attachment to the particles is

through the incorporation of a functional group that forms an electrostatic or covalent

bond to the particle surface. For magnetite-based magnetic fluids, the most common

functional group for attachment is carboxylic acid, which is known to form a strong d-

orbital chelation to iron atoms on the magnetite surface [26], as shown in Figure 1-3.

This attachment mechanism was used in the earliest magnetic fluids [27, 28], which

consisted of fatty acid-stabilized magnetite nanoparticles in kerosene, where the carboxyl

head group of the fatty acid attached to the magnetite surface and the alkyl tail provided

steric stabilization.



Carboxyl binding group

Figure 1-4. Attachment of carboxyl groups to the surface of a magnetite particle. The
carboxyl group forms a chelate bidentate structure with surface iron atoms.

Another important property of magnetic nanoparticles is that they are sufficiently

small to be single domain particles. The domain size of magnetite is -25 nm [29], which

indicates that 10 nm particles are composed of a single crystal of magnetite, each having

a permanent magnetic dipole similar to that of the bulk material. In a magnetic fluid,

these dipoles are randomized due to either Brownian relaxation (particle rotation) or Neel

relaxation (spontaneous fluctuation of the dipole direction within the particle). The

dominant mechanism depends on the size of the particle [19]. Magnetic nanoparticles

exhibit superparamagnetism, in that they have approximately zero net magnetization in

the absence of an applied field, but become strongly magnetized in an applied field due to

alignment of the particle dipoles with the field.



1.3.2 Magnetic Nanoparticle Synthesis

1.3.2.1 General Concepts

The synthesis of magnetic nanoparticles requires two steps: formation of the

nanoparticles and coating the nanoparticles with the stabilizing layer. Usually, the

synthesis is performed in the eventual dispersion medium, but in some cases the

nanoparticles are synthesized in one solvent and then transferred to another [28]. In

addition, the synthesis of the nanoparticles is usually conducted in the presence of a

stabilizing polymer or surfactant to prevent agglomeration during synthesis. This section

reviews the three most common methods of stable magnetic nanoparticle production,

although it should be noted that other techniques such as spark erosion [30] and plasma

generation [31] have been used to produce magnetic nanoparticles.

1.3.2.2 Size Reduction

The oldest and most basic method of magnetic nanoparticle synthesis is through

size reduction. In this technique, bulk magnetic materials are ground in a ball mill with

the dispersion medium and the stabilizing surfactant. The surfactant must be present

during grinding to produce stable nanoparticles. Size reduction was first described by

Papell [27], who ground a 30 ýpm magnetite powder in heptane with oleic acid to produce

a magnetic fluid with a final particle diameter of approximately 10 nm. The primary

benefit of size reduction is that it is simple and flexible, in that any type of particle can be

produced if a bulk powder is available. However, size reduction is a time-consuming

and energy intensive process, requiring approximately 1000 hours of grinding at 45 rpm

in order to reduce the particles to the required dimension [32].

1.3.2.3 Organometallic Decomposition

Magnetic nanoparticles can also be prepared by thermal decomposition of

organometallic compounds in an organic solvent [21, 33-36]. In this technique, an

organometallic compound and stabilizing surfactant are dissolved in a solvent and heated

to an elevated temperature (approximately 200-300 oC, depending on the compound), at

which point the organometallic species decomposes and the insoluble metal precipitates.



The surfactant binds to the particles just after nucleation, limiting the growth and forming

nanoparticles. A variety of magnetic nanoparticle suspensions have been produced by

this method, including cobalt particles from dicobalt octacarbonyl, [21, 33] iron particles

from iron pentacarbonyl [35], and magnetite particles from iron acetylacetonoate [36] or

iron pentacarbonyl followed by oxidation [34]. Magnetic nanoparticles produced from

organometallic decomposition tend to be nearly monodisperse, which is likely a result of

the elevated temperature used in the synthesis. This method of particle synthesis cannot

be performed in water due to the high temperatures and insolubility of the organometallic

compounds; however, aqueous magnetic nanoparticle dispersions can be produced by

subsequently transferring the particles to water with a new stabilizing surfactant.

1.3.2.4 Chemical Coprecipitation

A less energy intensive technique that is well suited for making aqueous magnetic

fluids is the chemical coprecipitation of metal salts, which was first achieved by Reimers

and Khallafalla [28]. This technique is limited to the production of ferrite particles, such

as magnetite (Fe30 4) [28], maghemite (y-Fe203) [24], or cobalt ferrite (CoFe20 4) [37],

and is probably the most common method for preparing magnetic fluids due to its

simplicity and relatively low cost. The discussion here is limited to magnetite

nanoparticle formation, as it is the basis of the magnetic fluids used in this study and of

most magnetic fluids in the literature.

Magnetite is formed by basic precipitation of an aqueous solution of iron (III)

chloride and iron (II) chloride in a 2:1 molar ratio, forming a spinel structure of Fe3+ and

Fe2+ ions that results in a net magnetic dipole [20]. Magnetite nanoparticles are formed

when this reaction is conducted in the presence of a dissolved stabilizing surfactant or

polymer that binds to the particles just after nucleation, limiting the growth of the

particles to -10 nm. The overall stoichiometry of this reaction is shown in Equation 1-1,

for the case where ammonium hydroxide is used as the precipitating agent.

2 FeC13 + FeC12 + 8 NH40H -> Fe30 4 + 8 NH 4C + 4 H20 (1-1)



The base is usually added in excess so that the pH of the reaction medium is strongly

basic (pH of 12-14). The size, composition, and magnetization of the nanoparticles are

affected by the reagent concentrations, stabilizer concentration, temperature, and pH

during synthesis [38-42]. The optimal reaction temperature for the formation of

magnetite is generally thought to be approximately 80 OC [38, 41], although magnetite

formation at room temperature has also been reported [43].

1.3.3 Applications of Magnetic Nanoparticles

1.3.3.1 Industrial Applications

Dispersion of magnetic nanoparticles also known as magnetic fluids have found

commercial use in a variety of industrial applications. Three industrial applications in

which magnetic fluids have found the most commercial success are sealing, damping, and

heat transfer [44]. Magnetic fluids are commonly used as rotary shaft seals in hard drives

because they provide a means of preventing gas leakage while avoiding rubber parts. In

this application, rings of magnetic fluid are held in place around the shaft with external

magnets that form a high pressure gas barrier [23]. Likewise, a film of magnetic fluid

held in place with an external magnet is used in place of an oil film in stepper motors to

damp vibrations and oscillations as the motor moves [44]. The damping properties of

magnetic fluids are also used in loudspeakers [45], where they also act as an improved

coolant fluid due to their high thermal conductivity and their development of

magnetically-driven convection cells in the presence of a magnetic field [19]. The

magnetic fluids used in these industrial applications are usually organic-based [45]. A

relatively new application is the use of cobalt-based magnetic fluids to increase

microwave absorption in the heating of nonpolar systems [33].

1.3.3.2 Biomedical Applications

Aqueous based magnetic nanoparticles have the potential to be used in a range of

biomedical applications, in which the nanoparticles generally require a coating that

provides colloidal stability in the body and is biocompatible. Magnetic nanoparticles

with biocompatible stabilizing polymers have been developed as magnetic resonance

imaging (MRI) contrast agents that have improved imaging properties in the body



compared to conventional ferric salt solutions [46, 47]. Magnetic nanoparticles have also

been used in drug delivery applications, which requires the absorption or covalent

attachment of drugs to the nanoparticles [48, 49]. Anti-cancer drugs absorbed on the

stabilizing layer of magnetite nanoparticles have been directed in vivo to a tumor by

applying an external magnetic field to concentrate the magnetic fluid in the affected area

[48]. Magnetite particles with attached monoclonal antibodies have also been developed

that are able to simultaneously deliver the antibody and generate heat by applying an

alternating magnetic field to the particles [49].

1.3.3.3 Biological Separations

Magnetic fluids (or suspensions of submicron magnetic particles) have been

applied to many different biological systems to separate cells [50] and proteins [51-56].

In most biological separation applications, the magnetic nanoparticles are used as

tagging-agents for the biological species, which usually have a negligible magnetic

moment. Cell separation with magnetic particles has been reviewed extensively by

Safarik and Safarikova [50]. Most techniques for cell separation involve functionalizing

the magnetic nanoparticles with ligands that bind reversibly to cells. When added to a

fermentation broth, for example, the magnetic particles bind specifically to the target

cells, which can then be removed by magnetic separation. In most cases, 1-5 itm

polymer beads with imbedded nanoparticles, such as the commercial product Dynabeads,

are used [50], which are not technically magnetic fluids due to the large particle size. In

some cases, magnetic nanoparticles have been used in cell separations. For example, a

magnetic fluid with functionalized maghemite nanoparticles has been used to separate

erythrocyte cells [57]. The cells are many orders of magnitude larger than the

nanoparticles and are therefore covered by many nanoparticles. Proteins, which are

significantly smaller than the nanoparticles, can be separated with magnetic fluids on the

basis of charge interactions [51, 52] or specificity of ligands attached to the nanoparticles

[53-55]. Recently, magnetic nanoparticle based on phospholipid-coated and polymer-

coated magnetite nanoparticles have been produced that are capable of protein loadings

as high as 1200 mg/cm 3 of particles [51, 58]. The magnetic separation of biological



products remains an extremely active area of research due to the high value of these

compounds.

1.3.3.4 Environmental Separations

Several techniques involving magnetic particles for environmental separations

have been proposed and demonstrated at the research level . Usually, these processes

use micron-sized particles composed of magnetite (or composites of magnetite and other

materials) that are used as magnetic tagging agents by coating them with a selective

adsorbent for targeted solutes, such as radionuclides [59], heavy metal ions [60], or

water-soluble organic dyes [61, 62]. Other techniques include using highly porous

magnetic beads that are effective in removing metal ions from water [63] and using

charged magnetic particles that aggregate with bacteria and solids to purify wastewater

[56]. An environmental separation with true magnetic fluid (i.e. suspensions of

individually dispersed magnetic nanoparticles) was first explored by Moeser et al. [64].

1.3.3.5 Magnetophoretic Separations with Magnetic Fluids

In magnetophoretic separations, a magnetic fluid is used to exert body forces on

nonmagnetic particles in order to separate them on the basis of size or density. This

approach is different from the biological and environmental separations discussed in the

previous sections, in which the magnetic particles serve as tagging agents. This process,

also known as magnetoflotation, has been used to separate coal particles of different

densities by suspending the particles in a magnetic fluid and applying a vertical magnet

field gradient [65] . The field gradient causes the particles to experience a body force

that acts opposite to gravity, changing the effective density of the fluid. By changing the

magnetic field gradient, the effective fluid density can be set between the density of two

types of particles, causing one to float and the other to sink. Recently, this concept has

been extended to cell separations. By suspending nonmagnetic cells in a magnetic fluid,

the cells can be driven against a magnetic field gradient; transport is opposed by the drag

force on the cells, allowing sorting based on the cell size [66, 67].



1.4 Background: Aggregation

1.4.1 Template Based Synthesis

Template based strategies have been extensively used for extending the length

scale of structural organization in materials. The underlying principle of template

synthesis is similar to that of making structures through the use of replication e.g. die

casting or mold casting. Membranes pores have long been used as templates to create

micro- and nanomaterials. Bean [68] was the first to fill the pores of a membrane with

silver to create silver nanowires. Poissin electrodeposited metals in etched mica

membranes to grow microstructures [69]. Immersing the membrane in a solution

containing desired monomer or salt and subsequent reduction or polymerization resulted

in metallic or polymeric microtubules [70-73]. Bicontinuous polymeric gels have been

used as templates for in situ mineralization of magnetite and polymerization of titanium

alkoxide [74, 75]. Velv and co-workers have infiltrated latex colloidal crystal templates

with gold sols. Subsequent removal of the template at elevated temperatures resulted in

stable replicas [76, 77]. Mann and coworkers used macroporous dextran as a template for

the production of metallic sponges [78]. Oil in water emulsions and micelles of block

copolymers have also been used as scaffolds to create mesoporous structures/hollow

capsules of materials [79-82]. One major limitation in the aforementioned techniques is

the lack of ordering at local scale. It is possible to replicate macrostrucutres using this

approach. It is like pouring cement into a mold to get the desired structure. At

microscale the cement particles are still randomly oriented [83]. One technique to obtain

certain degree of local scale ordering is using " Layer-by-Layer" (LbL) assembly. This

approach was first developed for flat surfaces and involves sequential absorption of

oppositely charged polyelectrolytes [84]. This method can also incorporate any charged

moieties like biomolecules, nanoparticles and polymers. This process was extended to

coat curved surfaces like spherical polymeric beads to create core-shell strucutres [85-

95]. Subsequent dissolution of the spherical template resulted in hollow capsules [85-

87]. We adapted this method of using Polystyrene beads coupled with LbL to prepare

hierarchical magnetic materials.



1.4.2 Radiation Crosslinking

Modifications in polymeric structure of the plastic materials can also be brought

about by exposure to ionizing radiation from either radioactive sources, or highly

accelerated electrons [96, 97]. Radiation crosslinking yields high purity materials free of

residual impurities such as crosslinking agents, catalyst or byproducts. The basic

principle of radiation crosslinking is that all forms of ionizing radiation interact with

matter by transferring energy to the electrons orbiting the atomic nuclei of target

materials. These electrons may then be either released from the atoms, yielding

positively charged ions and free electrons, or moved to a higher-energy atomic orbital,

yielding an excited atom or molecule (free radical). These ions, electrons, and the

excited species are the precursors of any chemical changes observed in irradiated material

[38]. Ionizing radiation is, in a sense, a double-edged sword. It can both crosslink

macromolecules and degrade them. In the absence of water, and in the presence

atmospheric oxygen, the latter effect predominates and constitutes a method for reducing

the molecular weight of ultra-high molecular weight e.g. Poly(ethylene) oxide (PEO) to

levels appropriate to different commercial applications. In the presence of water, and

preferably in the absence of oxygen, ionizing radiations produces hydroxyl radicals and

hydrogen radicals. The former then attack the PEO chains randomly, creating radical

carbon atoms on these chains, pairs of which couple to form the junctions [98]. The

hydrogen radicals mostly combine in pairs forming hydrogen gas. The dosage of ionic

radiation controls the amount of crosslinking. We have used to this technique to create

clusters of magnetic nanoparticles in situ. Aqueous solution of PEO coated magnetic

nanoparticles were prepared and rate of aggregation was studied as function of dosage

rate.

1.5 Research Overview

The overall goals of this research were: i) to develop a scheme to aggregate

magnetic nanoparticles in a controlled fashion to create 3-D magneto-responsive

structures, ii) to characterize the magnetic response of these structures under an applied

magnetic field, and iii) to demonstrate some novel applications of these structures.



Chapter 2 details the preparation of the rigid rod like structures (chains) with magnetic

nanoparticles. The response of the magnetic chains in the magnetic field was quantified.

Chapter 3 contains a detailed study of the comparison of the magnetic behavior of the

prepared core-shell structures with the commercially available beads in which the

nanoparticles are distributed in the bead matrix. The synthesis of flexible magnetic

chains and their subsequent manipulation is discussed in Chapter 4. Chapter 5 deals with

the use of surfactant as templates and radiation crosslinking to induce clustering in

nanoparticle suspensions. Chapter 6 entails the magnetic characterization of the

nanoparticles as a function of the nanoparticle size. The theory to employ magnetic

relaxation of the nanoparticle for energy adsorption is outlined and verified

experimentally. Chapter 7 outlines a practical method developed to encapsulate magnetic

nanoparticles in polymeric matrix by using electospinning. The synthesis of "smart"

energy absorbing magneto-responsive nanofibers using electrospinning and their

response to an applied magnetic field is discussed in this Chapter.
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Chapter 2

Rigid, Superparamagnetic Chains of Permanently-
Linked Beads Coated with Magnetic Nanoparticles

2.1 Introduction

Single domain magnetic nanoparticles have unique size dependent properties that

are not exhibited in the bulk material state. Their colloidal suspensions in a dispersion

medium are generally quite stable, and the nanoparticles do not settle under gravitational

and moderate magnetic fields due to their small size (-10 nm) and do not aggregate

because of their surface coatings [1]. These magnetic fluids, as they are commonly

known, are superparamagnetic in that the individual dipoles align under an applied

magnetic field, exhibiting magnetizations similar to those of the bulk magnetic material,

but, in contrast to bulk materials, these suspensions exhibit no remanence (i.e., residual

magnetization) once the field is removed as the dipoles are quickly dispersed by

Brownian diffusion and Neel relaxation phemomena. The magnetic interaction between

magnetic nanoparticles in a dilute solution, even when they are aligned under an

externally-applied magnetic field, is usually negligible, on the order of that of thermal

energy (kBT) at room temperature [2-6] so that Brownian diffusion can disrupt any

dipole-dipole interactions that could otherwise lead to the formation of chains of these

nanoparticles. Thus, while these suspensions have been used as sealants, refrigerants,

biosensors, etc. [7], they cannot be used in applications where large-scale structuring and

ordering of the particles is required, such as in magnetorheology and DNA separations.

Magnetic colloids in which magnetic nanoparticles (usually iron oxide) are

distributed in a polystyrene matrix or emulsion [8] (typically 400-800 nm with -30 wt%

magnetic material), on the other hand, are often used as model systems for the study of

magnetorheological (MR) fluid behavior [9-12]. Because the magnetic nanoparticles are

immobilized within the beads, they can act in concert to provide a significant magnetic

moment to the composite colloidal particle. This large magnetic moment under an



applied magnetic field enables bead dipole-dipole interactions to overcome thermal

motion, allowing the beads to self-assemble into stable chains. The properties of these

chains have been the subject of many MR-related and other studies under various shear

and field conditions. The beads reflect the intrinsic properties of the embedded

nanoparticles in that they are superparamagnetic, owing to Neel relaxation of the

magnetic dipoles in the individual nanoparticles, and the beads do not retain their

magnetizations once the magnetic field is removed. Thus, the dipole-dipole interactions

sustaining the chain formation are lost on removal of the field, and the colloidal particles

return to their freely dispersed state through Brownian motion, reversing the aggregation.

In some cases, it may be desirable to preserve the chain structure once the field is

removed, and it has been shown that these magnetically-driven self-assembled structures

can be linked by polymers or other linkages [13, 14] to form flexible chains of

permanently linked superparamagnetic beads which may have unique applications in

their own right, based upon their rheological properties in suspension under different

shear and magnetic field conditions. Such chains have been used, for instance, as probes

of MR fluid behavior, [13, 14] as micromechanical sensors [15] and in DNA and other

bio-separation processes that use rigid obstacles (e.g., columns of aligned magnetic

particles) to impede the convective transport of biological species [16].

We have developed an inexpensive and versatile technique to produce rigid

magnetic chains with peapod-like morphology on a relatively large scale. The magnetic

particles used to form these chains are polystyrene (PS) beads coated with polyelectrolyte

layers and maghemite (y-Fe 20 3) nanoparticles [17]. Sol-gel chemistry is used to link the

polarizable particles permanently, once they have been aligned within a microchannel by

an external magnetic field, to yield rigid superparamagnetic chains as a new class of

magnetoresponsive materials. The magnetic properties of the beads, and hence those of

the chains, can be controlled by varying the magnetic shell thickness. The extra strength

imparted by the bonding material (titania in this work) ensures that the permanently

linked rigid magnetic chains will be much stronger than those formed from free particles

in suspension under a magnetic field, and should be more robust in applications requiring

high shear or energy absorption rates. Hollow chains can be formed either by dissolution



of the PS beads using solvents, or during calcination of the chains themselves once they

are formed. In addition to bonding the linked chains permanently, the titania coating can,

in principle, be exploited in a range of other applications that include photocatalysis,

sensor technology, and antimicrobial resistance. These rigid magnetic rods can also have

potential microfluidic applications, for example, as microstirrers, microvalves and

micropumps [18, 19]. An important consideration in these cases is the dynamic response

of the rigid superparamagnetic microchains to externally applied magnetic fields; we

analyze these effects theoretically to provide simple analytical solutions for the

characteristic response times in terms of particle morphology and magnetic properties,

and applied field strength, with predictions that compare favorably with experimental

results.

2.2 Experimental

2.2.1 Materials

Titanium (IV) isopropoxide (99 wt%, TIP), poly(vinylpyrrolidone) (PVP, MW

150,000), anhydrous ethanol, poly (diallydimethyl) ammonium chloride (PDAMAC, MW

150,000), polystyrene sulfonate (PSS, MW 70,000), sodium chloride (NaC1), iron(III)

chloride hexahydrate (FeC13.6H 20, 97 wt%), iron(II) chloride tetrahydrate (FeC12.4H 20

99 wt%), sodium hydroxide pellets (NaOH, 99.99 wt% in water) and nitric acid (HNO3,

70% in water) were obtained from Aldrich (Milwaukee, WI). All chemicals were used as

received.

Teflon spacers and neodymium-boron-iron magnets (200 mT) were purchased

from McMaster Carr. Poly(dimethylsiloxane) kit (Sylgard 184) was obtained from Dow

Coming Company, MI. Micro glass tubes were procured from VitroCom, NJ. Sulfonated

PS beads (average diameter 790 + 19 nm) were purchased from Spherotech, IL.

2.2.2 Synthesis of Permanently Linked Chains

Figure 1 outlines the procedure for making the rigid magnetic chains. Positively

charged superparamagnetic PS beads were prepared using a layer-by-layer (LbL) strategy



as described by Caruso et al [20, 21]. The surface charge was modified by coating the

negatively charged bead alternately with layers of cationic (PDAMAC) and anionic

(PSS) polyelectrolytes, with the final layer being PDAMAC. The resulting positively

charged PS beads were then coated with negatively charged maghemite nanoparticles (y-

Fe20 3) and again with PDAMAC to yield positively charged magnetic beads. These

beads were resuspended in anhydrous ethanol, mixed with PVP and TIP, and injected

into a microchannel in which they were aligned upon the application of an external

magnetic field. The titania resulting from the hydrolysis of TIP nucleated preferentially

on the surface of the beads. This cemented the beads together and ensured that they

retained the chain configuration even after removal of the magnetic field, thereby

yielding permanently linked rigid magnetically susceptible chains.
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Figure 2-1. Production of permanently linked rigid magnetic chains. Polystyrene beads
coated with polyelectrolytes and magnetic nanoparticles using the layer-by-layer
approach are aligned in a microchannel under an applied magnetic field and cemented
together through hydrolysis of sol-gel precursors in the polyelectrolye layer.



Positively charged PS beads: Commercially available negatively charged sulfonated PS

beads (790 nm) were made positively charged using a layer-by-layer polyelectrolyte

adsorption technique [20, 21]. In a typical process, 0.5 mL of a 0.5 wt% solution of PS

beads was suspended in an aqueous solution of 0.5 mL of 1 mg/mL PDAMAC (0.5 M

NaCl). After 30 min of adsorption, the beads were separated by centrifugation at 7000g

for 10 min and resuspended in water. This process was repeated three times. The beads

were then coated with a negatively charged polyelectrolyte by suspending them in a 1

mg/mL PSS (0.5 M NaCi) solution using the process outlined above. These negatively

charged PS beads were finally coated with a second layer of PDAMAC to obtain

positively charged particles.

Synthesis of magnetic nanoparticles: Citrate-coated magnetic nanoparticles with an

average diameter of 10 nm (as estimated by TEM) were synthesized using Massart's

method [22]. In brief, a 2:1 molar mixture of FeC13.6H20 and FeC12.4H20 was

precipitated in the presence of 0.75M NaOH at 100 0C. The black precipitate was

decanted magnetically and after washing with IM HNO3 was dispersed in deionized

water and heated to 900 C, following which sodium citrate was added. The resulting

stable magnetic fluid was reprecipitated by addition of excess acetone, separated

magnetically, and redispersed in deionized water. This stable dispersion was centrifuged

at 18000 rpm for 3hr to remove excess citrate ions. The resulting precipitate after

centrifugation was finally suspended in deionized water to yield stable magnetic fluid.

Adsorption of magnetic nanoparticles on PS beads: The aqueous solution of magnetic

nanoparticles (150 uL, concentration 0.005 wt% in water) was added to the positively

charged PDAMAC/PSS/PDAMAC coated PS beads (1 mL, concentration 0.25 wt% in

water). After continuous shaking for 30 min, maghemite-coated PS beads were

recovered by centrifugation at 7000g for 10 min. They were again coated with

PDAMAC using the procedure outlined above to yield positively charged magnetic

beads. These beads were then centrifuged and washed with anhydrous ethanol four times

and finally resuspended in anhydrous ethanol.



2.2.3 Microchannels

Three different types of microchannel were used to confine the chains during the

synthesis of the rigid rods. In the first instance, the microchannel was prepared using

two glass microslides separated by a teflon spacer (25 pm x 50 mm x 25 mm). In

principle, the chain length can be controlled by varying the thickness of the spacer. The

chains were recovered by disassembling the microchannel and washing the glass slides; it

was necessary to assemble new microchannels for each batch.

In the second approach, PDMS microchannels were cast from a silicon master.

The PDMS prepolymer and the curing agent were mixed in a ratio of 10:1 and were

degassed under a vacuum of 15 mm of Hg for 45 mins. The mix was poured onto the

silicon master and cured at 65 OC for 4 hrs. This resulted in a replica of the channel on the

PDMS surface. The channel on the PDMS substrate and a glass slide were 02 plasma

treated and bonded permanently to yield a closed microchannel with a height of 50 pm

and a width of 2 mm. Needles were punched in the PDMS to serve as inlet and outlet

connections, as shown in Figure 2(a). The reactant mixture was injected through the

inlet port. A thin layer of epoxy was applied on the top surface of the channel to prevent

evaporation from the reaction mixture.

Commercially available glass microcells with dimensions ranging from 20 oum to

50 pm, and with an aspect ratio of 1:10, were used for the microchannels in the third

approach. Ten to twenty microcells were collected together to form an assemblage of

cells, each end of which was inserted into a tygon tube and epoxy-sealed around the

periphery to provide a common inlet and outlet for all the microcells. This assembly was

then epoxy-sealed on a glass slide for ease of handling (Figure 2b,c).



Figure 2-2. (a) A PDMS microchannel with inlet and outlet ports. The channel is 2 mm
wide and 50 pm in height. The serpentine nature of the channel accommodates larger
channel volume on a single glass slide. The colored dye was added for better contrast to
highlight the channel geometry. (b) A bundle of glass microcells collected in a tube and
(c) glued on to a glass slide with epoxy. This enables scaling out and makes the large
scale production of rigid chains feasible.

2.2.4 Linking of magnetic beads

In a typical reaction, a mixture of 0.5 mL (10 mg/mL) of PDAMAC-coated

magnetic PS beads in anhydrous ethanol, 3 pL of TIP and 5 mg of PVP were injected into

a microchannel. Two neodymium-boron-iron magnets of 200 mT each were placed on

opposite faces of the microchannel to provide a uniform magnetic field across the

channel. The reaction proceeded for 24 h under the applied magnetic field in an ethanol-

saturated chamber to prevent evaporation of ethanol from the microchannel reaction

mixture. The chains were recovered by washing with ethanol in the case of glass slides

or by flowing 2 ml of fresh ethanol into the channel for PDMS and glass microcells. In

the latter case a fresh reactant mixture was injected into the microchannel after the

recovery of the chains, and the process was repeated.

2.2.5 Hollow Chains

When desired the permanently linked magnetic chains were calcined at 500 OC

during which the PS beads and PE layers burned off to yield magnetic chains that

consisted of hollow spherical cores linked together by titania coating. For calcinations,

samples were first dried in a refractive crucible in a furnace, heated to 500 oC at a rate of

5 oC /min, held at 500 oC for 8 h, and then cooled to room temperature at a rate of 5 oC

/min.



In a second approach, the composite hollow magnetic shells were obtained by

suspending the magnetic beads in tetrahydrofuran for 8 hrs to dissolve the PS core

leaving the PE layers still intact. These hollow magnetic shells were then aligned in a

microchannel and linked together with titania to yield permanently linked composite

hollow magnetic chains.

2.2.6 Characterization

Transmission Electron Microscopy (TEM, JEOL 200CX, 200kV) and Scanning

Electron Microscopy (SEM, JEOL-6060SEM) were used to visualize the beads and

chains. TEM samples were prepared by drying a drop of suspension on a carbon substrate

grid while for SEM the sample was dried on a carbon tape grid. Zeta potentials of the

samples were measured in water (MilliQ, conductivity 18 Mc)) using a Brookhaven

ZetaPals zeta potential meter. The concentration of water on the bead surface was

measured using Karl Fischer Titration (Mettler Toledo DL31). A 0.5 wt% bead

suspension in anhydrous ethanol was centrifuged and the concentration of water in the

supernatant and in the centrifuged beads was measured to determine the partition

coefficient. The magnetization of the sample was obtained using a vibrating sample

magnetometer (ADE 880 VSM). The dynamic response of the chains to an applied field

was measured by placing the microchannel containing the rigid chains in the center of a

Helmoltz coil. The response was observed with an optical microscope (Zeiss, Axiovert

200) using 20X/1.0 objective. The chain response was captured with a digital camera

(Hitachi, KPM1A) with a speed of 30 frames/sec using Scion Image (NIH public domain

software) which was also used for image analysis.

2.3 Results and Discussion

2.3.1 Magnetic Beads

Magnetically-responsive beads were synthesized using the layer-by-layer

technique in which the polystyrene beads were coated sequentially with positively and

negatively charged polyelectrolytes, and magnetic nanoparticles. The effective

sequential coating of the beads was monitored by the reversal of surface charge as each



polyelectrolyte layer was added, as determined by zeta (ý) potential measurements, while

complete coverage of the PS beads with magnetic nanoparticles was confirmed using

SEM. The thickness of the maghemite coating, estimated by comparing the SEM images

of bare and completely coated beads (Figure 3) to be 25 nm, was comparable with the

maghemite thickness calculated (27 nm) based on the relative amounts of PS beads and

magnetic nanoparticles added.

Figure 2-3. SEM micrograph of (a) plain PS beads and (b) magnetic nanoparticle-coated
beads. The samples were sputter coated with gold for better contrast. The thickness of the
magnetic coating was estimated to be 25 nm based on the difference in the diameters of
the coated and the uncoated beads.

The magnetization of the positively charged magnetite beads, as determined using

VSM, is shown in Figure 4 as a function of applied field strength. The lack of any

remanence indicates that the particles are superparamagnetic in nature. This



superparamagnetic property of the beads, which are well-dispersed as individual particles

in the absence of an applied magnetic field, enables their reversible aggregation as chains

under an applied magnetic field. The slope of the magnetization curve M/H at H -* 0

gives the value of the magnetic susceptibility (x) of the bead which was estimated to be

3.3 for the magnetic material coating the beads. The saturation magnetization of the

beads was found to be 238 A/m which is lower than the accepted value of 357 A/m for

bulk maghemite. Since the average particle size is smaller than 10 nm this could be due

to the surface spin canting that exists for small magnetic nanoparticles [23].
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Figure 2-4. The magnetization curve for the magnetic beads shows no hysteresis; the
forward and backward magnetization curves overlap completely and are indistiguishable.
The beads have zero magnetization at zero applied field indicating that they are
superparamagnetic in nature.

2.3.2 Microchannels

The microchannels prepared from glass slides separated with teflon spacers

yielded a polydisperse chain length distribution, probably because the channel height was

not uniform across the channel. Also, the total number of rigid chains that could be

produced using these microchannels was very low and it is not feasible to scale up this

process. These problems were overcome using PDMS channels, which have uniform



height and can be used on a semi-continuous basis. A drawback of the PDMS channel

was that ethanol wicked away from the reactant mixture causing both the PDMS to swell

when the reaction was run for a long time, and a localized drying in the channel with

subsequent adhesion of the chains to the glass surface. To avoid this, the reaction had to

be terminated after 4 hrs. Some chains were observed, but the incorporation of beads in

the chains was incomplete. The chain length distribution was, however, comparatively

monodisperse (Figure 5). Recovery of chains by flowing excess ethanol through the

microchannel was difficult, as some breakage of these chains occurred at the outlet port

junction where the needle was flush with the glass, which required the chains to bend

around the corner. Another disadvantage of this process is the tedious procedure used to

construct the microchannel itself.

None of the above-mentioned problems was observed when glass microcells were

used as microchannels. No evaporation losses occurred, as glass is impermeable to

ethanol, and relatively monodisperse chain length distributions were obtained (Figure 6).

Chain breakage was reduced considerably since the direction of the ethanol flow during

the recovery was in the plane of the channel. The glass microcells could be assembled

and scaled out easily thereby making the relatively large-scale production of these chains

on a continuous basis feasible.
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Figure 2-5. (a) Optical micrograph of chains synthesized in a PDMS microchannel. The
reaction was terminated after 4 hr. (b) The chain length has a narrow distribution with an
average length of 43.6 pm ± 5.9 pm.
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Figure 2-6. (a) The size distributions of chains synthesized in 30 jm x 300 um, 40 jm x
400 pm and 50 jum x 500 pm glass microcells, with average lengths of 27 pm ± 3 pnm,
40 pm ± 4.5 um and 44.7 pjm ± 6 pm respectively. (b) The optical micrograph shows
the chains aligning with an external magnetic field.

2.3.3 Permanently Linked Chains

The outer PDAMAC layer on the magnetic PS beads was highly hygroscopic and

retained some of its water of hydration even when suspended in anhydrous ethanol; the

partition coefficient for water between the bead surface and the bulk ethanol was

measured by Karl Fischer titration to be -60. This localized concentration of water on the

outer PDAMAC layer ensured preferential hydrolysis of TIP on the bead surface. A small

degree of hydrolysis was observed in the bulk due to the low concentration of water in

the solvent, but this did not affect the properties of the chains formed during this process.

Titania is negatively charged at neutral pH [24], and the positive charge on the magnetic

beads from the outermost PDAMAC layer ensured that the nucleated titania was captured

efficiently by the particle surface. The charge on the bead surface reversed from positive

to negative as the adsorption of titania continued. During this process of charge reversal,

some of the beads acquired a negative charge, while others were still positively charged.

The aggregation of such oppositely charged beads, which inhibited the formation of

chains, was prevented by adding PVP to the suspension, which adsorbed on both titania



particles and the magnetic bead surfaces to impart a steric stabilization against bead

aggregation [25]. At the end of the reaction, permanently linked rigid magnetic chains

were formed which were stable and could be recovered and stored for months without

degradation.

Transmission electron microscopy (JEOL 200CX, 200kV) indicated a titania

coating thickness of 30 nm (Figure 7), that was close to the thickness (32 nm) calculated

based on the concentrations of TIP and PS beads used in the experiments indicating that

very little, if any, TIP was lost to hydrolysis in the bulk.

Figure 2-7. TEM micrographs of titania-coated magnetic chains. (a) Alignment of beads
in the chain. (b) The magnetite and titania coating layers are clearly evident, allowing
the thickness of the titania coating to be estimated as approximately 30 nm.

Column-like structures, where two or more chains of magnetic beads were fused

together, were also observed (Figure 8) and attributed to the magnetic dipolar interaction

between the individual chains in the presence of a magnetic field. If the adjacent chains

are offset by half the particle diameter, the interaction is attractive in nature [26]; with no

offset the interaction is repulsive.
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Figure 2-8. (a) SEM micrograph of interacting magnetic chains to form a partial doublet.
(b) When two chains are aligned in a magnetic field, the overall interaction is repulsive in
nature but when the chains are out of registry by half the diameter, it results in an
attractive interaction.

2.3.4 Hollow Chains

Calcination of the permanently linked magnetic chains at 500 oC resulted in

hollow chains as shown in Figure 9(a), and a conversion of the amorphous titania to its

crystalline anatase form, as confirmed by X-ray diffraction (not shown). The anatase

form of titania has a higher mechanical strength and a much wider range of application

possibilities [27] than does the amorphous form of this oxide. The magnetization of the

chain initially increased with calcination temperature (from 238 kA/m before calcination

to 280 kA/m at 500 oC), attributed to an average increase in nanoparticle size due to

aggregation during the calcination process [28] (Figure 10). The magnetization



eventually dropped to zero at higher temperatures (at and above the Curie temperature)

due to thermal disordering of the magnetic domains in the fused nanoparticle shells.
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Figure 2-9. (a) TEM micrograph of hollow titania-linked magnetic chains prepared after
calcination. The transparency of the beads in the micrograph provides evidence of their
hollow structure. (b) XRD diffraction spectrum of the calcined chains confirms the
presence of anatase. The peak at 25.369, 38.085, and 48.069 correspond to anatase form
of titania. (c) Composite hollow beads, prepared after organic dissolution of the core



(inset micrograph) were used to prepare composite hollow chains. The presence of PE
multilayers and a coating of amorphous titania gives the chain its opaque appearance.
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Figure 2-10. Magnetization of the chain as a function of calcination temperature. The
magnetization of the calcined chains initially increases with the temperature due to net
increase in nanoparticle size on sintering, but approaches zero near the Curie temperature.

The permanently linked composite hollow magnetic chains shown in Figure 9(b)

were obtained by aligning and fusing together individual hollow shells in which the PS

cores had been dissolved out by the solvent, tetrahydrofuran. These chains were partially

distorted since the magnetic nanoparticles were supported only by the flexible PE layers.

This type of structural configuration should impart elasticity to these chains, thereby

improving the energy absorption capacity of these suspensions when shocked, which

could be improved further by using polyelectrolytes with higher elasticity and strength.

The saturation magnetization of these chains was the same as that of the original

magnetic beads (238 kA/m).



2.4 Kinetic Response to an Applied Magnetic Field

The dynamic response of a magnetic chain to perturbations in applied magnetic

fields, or to other forces that cause the rods to be deflected within a steadily applied

magnetic field, may be exploited in a number of magnetically actuated micromixing,

pumping and sensoric applications, and in microseparations and magnetorheological

processes. The characteristic response times to externally applied forces can be estimated

using methods similar to those employed to model the response of a magnetorheological

(MR) fluid in a rotating magnetic field [29, 30]. We provide a short derivation below to

arrive at an explicit analytical expression for the characteristic response time for single

chains, and then extend this model to systems composed of clusters of two (doublet) or

three (triplet) chains.

Consider a chain of N connected beads, each of radius a, enclosed in a

microchannel (Figure 11(a)). Each bead can be approximated as a point dipole with a

magnetic moment m determined by the amount of magnetic material in its shell and the

local magnetic field to which it is subjected. When an external magnetic field of

magnitude Ho is applied across the microchannel, a magnetic torque Fm acts on the

magnetic chain, causing it rotate to try to align with this external magnetic field. The

rotation is impeded by a counteracting viscous drag torque Fv as the chain moves through

the solvent, resulting in a torque balance on the chain, viz.,

d29I -=F +F (1)
dt 2  m v

where I is the moment of inertia around the point of rotation, 0 is the angle between the

chain and magnetic field, and t denotes time. The overall rotational response time to an

applied magnetic field can be estimated once we identify appropriate expressions for the

magnetic and drag torques.
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Figure 2-11. (a) A restoring torque acts between two dipoles to align the resulting
moment of the beads parallel to the external magnetic field. (b) Schematic of a
permanently linked chain (singlet) at an angle 0 to the applied magnetic field.

The magnetic torque is generated when the system attempts to align the moment

of each bead, m, with the external field (Figure 11(b)). The force responsible for the

alignment of a pair of connected beads is given by [26]

f 3 (e _-3cos2 .. e sin (20)1  (2)

where uo is the magnetic permeability of free space; m is the magnitude of the magnetic

moment induced in each bead by the local magnetic field; Oy is the angle between the

external magnetic field Ho and the vector rij (of magnitude ry) joining the centers of the

two dipoles; er is the unit vector parallel to ri; and eo is the unit vector parallel to

er x (e x H ). The magnetic torque acting on the connected bead pair is

F = f.. x r.. (3)
mU y u

The total torque about the center of the chain of N connected beads can be obtained by

summing over all connected bead pairs to yield



3m2 N/2 N/2 1
. 3m2 sin(20)) 2r 1 (4)

4p0 i=1 j=-N/2 r.j

where ri is the coordinate of the ith particle, and it is assumed that all beads have magnetic

moments of the same magnitude, m. If only nearest neighbor interactions between

magnetic beads are considered, then the magnetic torque on the chain can readily be

evaluated to be [31]

3m2L 2

F = sin(29) (5)
m 4u 0o 2(2a) 5

where L=2aN is the chain length.

The viscous torque on a chain of length L comprised of N beads rotating at an

angular velocity co = dO/dt was given by Doi and Edwards as [32],

--•yL3F = - (6)
31n(L / 4a)

where q? is the viscosity of the medium through which the chain is rotating, and the minus

sign indicates that the viscous torque acts in the direction opposite that of the rotation.

From scaling arguments [29], I(d20/dt2)- mcL 2 2 where mc is the mass of the

chain and Fv - qL3 o . Thus, the viscous term will dominate when (w << qL / mc - 106

rad/s (mc- a2Lp, a - 10-6 m, p -10 3 kg/m3 , and L-10-5 m). Generally w - 10 rad/s, and

hence the inertial term can be neglected, and o can be calculated from equations (4) and

(5) for any given value of 9. Combining (4), (5) and (6) and rearranging, we get

dO 9 m 2 In(L / 4a) .
d 4(8,sin(2) . (7)
dt 4(87r) 2 to rlLaS



Integration of this equation will give the time-dependent orientation of the chain relative

to the applied magnetic field. Before we can perform this integration, however, we need

to determine the magnitude of the bead magnetic moment m as a function of chain

orientation relative to the magnetic field.

The induced magnetic dipole moment m of the bead is given by

m = ploVM = uo4 4a 2sxH, (8)

where M is its magnetization under a field Hi, V is the volume of the magnetic material

distributed as a thin shell of thickness s on the surface of the bead of radius a, and X is the

magnetic susceptibility of the magnetic materials. The total field Hi acting on the bead at

position i is the sum of the external magnetic field and the local magnetic field at point i

induced by the neighboring beads in the chain, i.e.,

H, = Ho + H (9)
jfi

where the field induced by dipolej at position i is

1 3r..(r..-m.)-m. (10)
H . = rl " ' (10)

S4nz•o r.3

If only nearest neighbor interactions are allowed between beads with center-to-

center separation distances of ry = 2a, and if the magnetic moments are the same for all

beads in the chain (i.e., mi = mi = m), then the radial and angular components of m are

readily evaluated to be [33]

o p0 4ra2sXH cos0 puo 4ra2s H sin0
mr j and m= L (11)

I 4a 2 s(3)Z 2a2s s(3)X
r3 1+ 3



respectively, where j(e) is the Riemann zeta function (J(3) -1.202). These results show

that as a direct consequence of the induced fields, the dipoles are not aligned completely

in the direction of the applied field [33].

Noting that m2 = m2 + m2 can now be evaluated explicitly as a function of 9,

Equation (7) can be rewritten in dimensionless form as

dO In(N / 2) 02 30(2_-) 2d n(N/12) -3(2-) sin2 8 sin(20) (12)
d(t / )- (N/2) (1-2b)2 - (1+2)2

where r = 42(3)rq is a characteristic time constant, and 0=- (3)Zs is an effective
9p~oHo 4a

magnetic susceptibility for the magnetic nanoparticle-covered beads. This equation can

be integrated to give the angle 0 implicitly as a function of time, for a given initial angle

00,

2 csc 2 -30(2 - )
t (N/ 2) (1+ In2 { tan9•+ 3+(2-0) 2 (1)-(1+ ()2
r 41n(N/2) •) I tan )  (1+ )2 2 3(2- (13)

0 (1+ 0)2

If the initial angle 00 is 6t/2, i.e., if the rod is initially in the plane perpendicular to

the direction of the applied magnetic field, the magnetic dipoles are aligned with the

magnetic field, and the there is no magnetic torque on the rod. Thus the rod will not

move and the predicted response time is infinite. Similarly, the torque on the rod will

tend to zero as it approaches complete alignment with the field, i.e., when the final angle

Of approaches 0, and it takes infinite time to approach complete alignment. In reality,

however, Qo and Of are never identically equal to these values because the rod will

fluctuate about these equilibrium angles owing to thermal motion, and because the beads

themselves may be slightly out of alignment in the rod (see Figure 7(a)), such that even at

0= 0 or n/2, there is a finite torque on the rod under an applied magnetic field. If we



assume that the effective mean displacements from the initial (0) and final (Of)

orientations due either to thermal fluctuations at time t = 0 or to bead misalignment, or

both, are small but non-zero then Equation (13) can be simplified to give the total

response time, tf, for the rod. Thus, setting 00 = rc/2+<o>0 and Of= +<0>0, we obtain

tr (N / 2) 3(2 - ) I 1+ 2 (4(1+ )2- )
InL IJ -2 2 In < O >o (14)

where we have used the fact that <0>0 is small to linearize the trigonometric functions,

and have recognized that <0>2 < 3 <> << 1. Thus, the normalized
(1+±) 2

response time can be evaluated explicitly knowing the chain length and the effective

magnetic susceptibility of the coated beads, for given initial and final effective

displacements of <090 relative to their nominal values of Tc/2 and 0, respectively. When

the initial alignment of the rod is not perpendicular to the applied magnetic field, then a

finite value of 90 can be specified, and the effective response time can be calculated

directly using Equation (15).

When two chains are fused together (doublets), an analytical solution for the

moment calculation is not possible and the system of equations above needs to be solved

numerically. To do so, the center of each bead in the doublet is determined explicitly in

the x-y coordinate system (Figure 12) such that the center ith bead of chain 1 is fixed at

the origin, and the coordinates of all the other beads in chain 1 and chain 2 are defined

with respect to it. The x and y coordinates of chain 1 in a polar coordinate system are

x(i)= 2aisin(O); y(i)= 2aicos(O) 0 <i<N/2 (15)

By using standard trigonometric relations the x and y coordinates for chain 2 can be

written as follows



x(j)=b1 sin(fl); y(j)=b1 cos(pf);

b1 =(2a) 2 + (2aj)2 - 2j(2a)2 cos(2z / 3);

1 (2a)2 +b1 -(2aj) 2 /
f6j =cos -1  +0-r/3;
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Figure 2-12. Schematic of (a) doublet and (b) triplet chains, and (c) the geometry used
for specifying relative positions of beads in such chains.

It should be noted that in a doublet, each bead has four nearest neighbors and this

is taken into account when the nearest neighbor interactions are calculated. The above

equations can be extended to the triplet clusters due to the symmetry across chain

1(Figure 12b). Again we allow for nearest neighbor interactions only, noting that beads

in chain 1 have 6 nearest neighbors while those in chains 2 and 3 have 4 nearest

neighbors. For the calculation of viscous drag, the shapes of doublets and triplets are

approximated as solid ellipsoids with long semi axis d, short semi axis e and volume V,

for which the viscous drag torque is [34]

4(d / e) 2 77 VC
2 ln(d / e) - 1

(17)

With these equations and coordinates, Equations (8), (9) and (10) were solved

numerically to determine the magnetic moments of the beads in the chain. Equations (4)

,,, ,

-X
> X



and (17) can be solved numerically to provide the angle of the rod relative to the applied

magnetic field as a function of time.

The time-dependent orientation of a 45 gtm chain in response to an externally-

applied magnetic field is shown in a series of snapshots in Figure 13(a). Such results

were used to evaluate the angular displacement and angular velocities of the chain as a

function of time, as well as the total response time for the chain to align with the applied

magnetic field. The predicted angular velocity for different chain configurations

(singlets, doublets and triplets) shown as a function of 0 in Figure 13(b) attains a

maximum at 0 close to 450, where sin(20) =1; there is a slight but relatively unimportant

displacement from 450 in the maximum because the orientation of the magnetic dipoles is

slightly different from the direction of the applied magnetic field. The magnetic dipoles

are, in fact, aligned with the magnetic field only when 0 = 0 and 0 =tC/2, and at these

orientations the chain experiences no magnetic torque whatsoever. Note that the doublets

and triplets respond more quickly to the applied magnetic field than do the singlets,

reflecting the effect on the magnetic torque of the larger total magnetic material content

per unit chain length in the bundled chains relative to the single chains. The increase in

viscous drag on the bundled chains, which scales with bundle projected area, cannot

counteract totally the increase in the magnetic forces acting on the chains, which scale

with volume.

The predicted variation in the orientation of the chain, i.e., in 9, with time

following the application of the magnetic field is shown in Figure 13(c) for various

values of the effective magnetic susceptibility, b. Experimental values for selected

chains of three different lengths are in very good agreement with the a priori predictions

for our core-shell beads, which have an effective magnetic susceptibility of

approximately 0.06. These results reflect the angular dependence of the rotation rate

given in Figure 13(b) - the initial changes with time are small, but then increase rapidly

at intermediate chain orientation angles before slowing down again as the chain begins to

align with magnetic field, i.e., 0 approaches zero. Clearly, and as expected, the magnetic

susceptibility has a strong effect on the response to the magnetic field, with a significant

displacement of the curves to smaller times with increasing 0. These time response



curves were based on the assumption that <0>o = 0.02 rad; for other values of the initial

angular displacement the curves will be shifted to the left (larger <o>0) or right (smaller

<0>0), but the overall shapes of the curves will be preserved, albeit with some slight

distortions depending on the value of 0.

The importance of the effective magnetic susceptibility, 0, chain length, N, and

initial angular displacement, <0>0, on the normalized total response time is shown in

Figure 13(d). The solid lines represent the response times for <0>0 =0.02 rad, while the

broken lines bracketing the curve for N = 50 show the sensitivity of the response time

calculations to <0>o. As anticipated, the response time decreases with increasing b , and

increases as the rod length increases. An important observation is that the response time

is not particularly sensitive to small variations in the initial angular displacement about

some nominal value, and the predictions probably fall well within the experimental

tolerances.
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Figure 2-13. (a) Snapshots of a chain (45 pm) as it responds to an externally applied
magnetic field normal to the plane of the paper. The numbers on the snapshots indicate
time in milliseconds. (b) Angular velocity predictions for a 50 jAn chain as a function of
0. The angular velocity increases with the chain clustering and achieves a maximum at
close to 0 = 450. (c) Time-dependent orientation of magnetic chains showing importance
of shell structure and dimensions on the chain response to a magnetic field. Note that the
effects of length, magnetic field and solvent are incorporated in the normalized time
variable. Experimental results for selected chains of three different lengths with b = 0.06
are in good agreement with predictions. (d) The normalized response time for chains of
varying length as a function of effective magnetic susceptibility, 0, for different initial
displacements <8>0 .

The response times for 25 pm (N = 28) and 50 upm (N = 56) chains determined

from experimental results for singlets, doublets, and triplets are shown in Figure 14,

where they are compared with theoretical predictions. The appropriate values of <60>

used in the predictions were those that provided a match between the predicted and

experimental response times at Ho = 0.005T (e.g. <8>0 was taken to be 0.018 rads for a

50 pm singlet chain). The predicted and experimental variations of the response times for

different chains agree well, as shown as a function of Ho on a logarithmic scale for chain

lengths of 25 um and 50 jm. As predicted, the dynamic response of a chain of fixed

length scales with 1/Ho2. The difference in the response times between the singlet and the

doublet and that between the doublet and the triplet decreases with the number of chains

0.3



because the proportional increase in the magnetic torque is higher than the proportional

increase in the viscous drag. Depending on the length and the diameter of the rigid

chains and the externally applied magnetic field, the response time of the chain ranges

from on the order of milliseconds to seconds.
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Figure 2-14. The response times for (a) 25pm and (b) 50 pAn singlet, doublet and triplet
chains compare favorably with theoretical predictions, and scale with 1/H0
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2.5 Conclusions

An inexpensive and versatile approach has been developed for the synthesis of

monodisperse magnetoresponsive rods of desired diameter, length and magnetic

susceptibility based on the confined alignment of magnetic beads in microchannels of

selected channel height, followed by localized hydrolysis of sol-gel precursors within the

shells of the beads. A variety of sol-gel precursors and magnetic nanoparticles can be

used to create the desired morphologies. The diameter and length of the chains can be

controlled by changing the polystyrene bead diameter and the height of the microchannel,

respectively. The magnetization of the beads can be enhanced by depositing additional

magnetite layers on the particle surfaces, following the established layer-by-layer

technique. Glass microcells provided the best option for the microchannels as they can be

assembled readily into bundles and allow easy recovery of the final product. Predictions

of the dynamic response of the system agreed well with experimental observations and

indicated that, depending on the applications of interest, the response time can be tuned

readily either by changing the magnetic field or by varying the chain length, bead

diameter and nanoparticle coating thickness. Potential applications of these rods are

similar to those described by Biswal et al. [33], who have shown that permanently linked

flexible magnetic chains can improve micromixing in microchannels under a rotating

magnetic field. They can also be used as micropumps in a microchannel under a rotating

magnetic field.
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Chapter 3

Orientational Dependence of Apparent Magnetic
Susceptibilities of Superparamagnetic Nanoparticles in

Planar Structured Arrays:
Effect on Magnetic Moments of Nanoparticle-Coated Core-Shell Magnetic Beads

3.1 Introduction

The current strong interest in magneto-responsive colloidal systems arises from

their potential applications in, inter alia, magnetic resonance imaging [1-4], targeted

drug delivery [5-9], hyperthermia treatment [10-14] and other biomedical areas, as well

as in chemical, environmental and biological separation processes [15-19] These

magnetic colloids are usually either stabilized dispersions of individual magnetic

nanoparticles and clusters of these nanoparticles in a solvent phase, or they are

suspensions of micron-sized polymer beads with the nanoparticles embedded within

them. These latter magnetic colloids also exhibit magnetorheological (MR) behavior

upon application of a magnetic field by forming chains in the direction of the magnetic

field, thereby causing the MR fluid to change from a liquid-like to a solid-like state with

a commensurate dramatic increase in yield stress [20-23]. In all cases, the governing

parameter that determines the response of the colloidal particles to the magnetic field is

the particle magnetic moment induced by the magnetic field [20, 24, 25].

It is generally assumed that the larger magnetic beads behave as point dipoles

when subjected to an externally-applied magnetic field, and that their magnetization is

governed primarily by the total amount of magnetic material encapsulated in the beads

[20, 24, 26, 27], usually 25 - 40 wt % iron oxide (either y-Fe20 3 or Fe30 4 ) in the form of

nanoparticles with an average size of about 8 nm. The spatial distribution of the magnetic

nanoparticles within a bead is assumed not to be critical. This is true for systems in which

the distance between magnetic nanoparticles distributed in the matrix is sufficiently large

that any inter-particle interactions can be neglected, but is not necessarily the case when



core-shell magnetic colloids are used, in which the nanoparticles are adsorbed as layers

on the bead surface using, e.g., the technique of Caruso et al. [28, 29] as shown in Figure

3-1. The magnetic nanoparticles in the core-shell structure are in close proximity to each

other and, in addition to the applied magnetic field, these particles can also experience the

magnetic fields of the neighboring nanoparticle dipoles. These particles themselves have,

on average, magnetizations induced by the combination of the applied magnetic fields

and those associated with the individual surrounding nanoparticle dipoles, and can thus

affect the net magnetization of the collection of particles.

Matrix Bead

Core-Shell Bead

Figure 3-1. (a) TEM micrograph and schematic of matrix type magnetic colloids, and
(b) TEM micrograph and schematic of nanoparticle-coated polystyrene beads.

Planar arrays of interacting magnetic nanoparticles have been analyzed [30-34]

under conditions for which the local moment distribution of the nanoparticles is governed



by short-range exchange interactions and long range dipolar interactions. For systems

composed of 10 nm magnetite nanoparticles, as in this work, the exchange energy can be

taken to be small and so we only consider the effects of dipolar interactions on the net

magnetic moment. The goal of this paper is to examine the magnetic moment developed

by core-shell type magnetic beads under externally-applied magnetic fields and show that

in some cases this magnetic moment can be greater than that for equivalent matrix-type

configurations, by up to about 30% for iron oxide nanoparticles. This implies that the

interaction energies between colloids, which depend on the square of their magnetic

moments, can be significantly larger for core-shell magnetic colloids than for matrix-type

beads. In constructing the model, we recognize that the orientations of the particle arrays

relative to the external magnetic field are defined by the azimuthal angle. Thus, we

model the particle arrays as being planar at each point, evaluate the effects of the induced

magnetizations on the effective magnetic moments of the particles in the planar arrays at

different orientations of this array, and then integrate the effective moments over the

particle surface, allowing for their azimuthal dependence, to arrive at a result for the

magnetic moment of the entire bead itself.

It is not possible to probe experimentally the azimuthal dependence of the

magnetic moments of nanoparticles in the shell of the shell-core model. In contrast, it is

relatively simple to probe orientational effects on the magnetization of layers of

nanoparticles deposited on planar substrates. We present magnetization studies

performed on such arrays of magnetic nanoparticles to verify the model predictions of the

effect of orientation on the effective magnetic properties of these arrays.

3.2 Theory

The average magnetic moment per particle for a collection of superparamagnetic

nanoparticles under an applied magnetic field H, = H1H,i can be represented well by the

equation [35]

i °V Hi = OV XH for H i <<

1 + PHi HoV( / )i i for H, >(1)[}iV(;x/ P)H~fr~



where H i =(. Hi )1/2 is the magnitude of the magnetic field, and Hi is the unit

vector in the direction of the magnetic field. The permeability of free space is given

by p0 , V is the effective volume of the magnetic core, and X is its magnetic susceptibility,

which is a constant given by the slope of the magnetization (M) curve at low magnetic

fields i.e., =(dM / dH) . The magnitude of the magnetic field at which the

magnetization is half its saturation value is 1/f1. The dimensionless quantity pu0Vz is the

effective magnetic moment per unit magnetic field strength at low field strength, while

p,0V / 1P is the saturation magnetization at high field strengths.

The effective magnetic moment of an assembly of N superparamagnetic

nanoparticles is the sum of the moments of the individual nanoparticles in the assembly,

i.e.,

N N

Fmntotal IC Hi (2)
i=1 i=1

For non-interacting particles, such as those distributed uniformly within a

polymer bead, all particles will experience the same magnetic field, i.e., the externally

applied field H0 , and hence

m tot7n =N-t Nmi0  (3)

When the particles are in close proximity, as in the shells of the core-shell

superparamagnetic beads considered here, the magnetic field associated with the

magnetic moments of the individual dipoles themselves must also be accounted for in

determining their effective magnetic moments. Thus, when the assembly of particles is

in an externally applied field R-0 the net magnetic field acting on a nanoparticle i is

H, =H"- + /0 -  (4)
j•i



where H.. is the field of the jth particle acting on the ith particle, and is given by

[36]

S= 1.. (5)
4n 4to ,

Here, ( is the unit vector joining the centers of the two particles, which are

separated by a distance r... Thus, the average magnetic moment for a magnetic

nanoparticle in a collection of such particles is

m- V =_ Ho + .3r( r.3i " j)-J (6)
m (1+ PH,) 4ji 4,pUo r

At low field strengths, when fl/H = 1, this equation can be solved for the

magnetic moments explicitly, as shown below. Under conditions where PHi cannot be

neglected relative to unity, the equations are non-linear, and cannot be solved to give

closed form solutions for the moments of the particles as a function of field strength; for

this purpose we use a perturbation theory analysis to linearise the problem, as developed

in a later section.

3.2.1 Magnetic Moments Under Small Applied Magnetic Fields

When the applied magnetic field H 0 is sufficiently small that 8H o = 1, then

Equation (1) can be written in non-dimensional form as

p i = ' = H3 + - (7)

where poVxH o is the magnetic moment of an isolated magnetic nanoparticle

under the same applied field, directed along the unit vector H = H / Ho , and

r.i = / 2a is the normalized interparticle distance (rij = 1 for nearest neighbor particles



if they are touching). The normalized magnetic susceptibility I = ( / V allows for

differences in the actual volume of the nanoparticle, V , and the volume of the magnetic

core, V, as captured by V/V =(1- /a , where sis the combined thickness of the

nonmagnetic surface layer on the iron oxide particle and the thickness of the surfactant or

polymer stabilizing layer on the nanoparticle surface.

This equation holds when all particles are in the same environment, as, for

instance, when the particles are packed regularly in a planar monolayer oriented at an

angle a relative to the applied magnetic field. For multiple layers, equations can be

written for the magnetic moments of nanoparticles in each layer, and the resulting

coupled set of independent linear equations solved simultaneously for the moments in

each layer. When the magnetic nanoparticles are arranged as a monolayer, or as multiple

layers, adsorbed to the surface of a large bead, and if the size of the bead is considerably

greater than that of the individual magnetic nanoparticles, i.e., a = R, then locally we

can consider the particle array to lie in a plane tangent to the bead surface at that point.

Thus, we can determine the effective magnetic moments of the particles at any azimuthal

angle a (see Figure 3-2) by treating the system locally as a planar array of nanoparticles,

and then, by integrating these local moments over the surface of the bead, we can obtain

the overall magnetic moment of the core-shell bead itself.

The enhancement in the magnetic moment for the core-shell bead owing to the

interactions between particles relative to when the nanoparticles do not interact is then

mbead =- K 2 k /2 (a, )cosadadO = 0HoK /2 (a) cos ada (8)Pbead(K) = I__ I ( AKcos ada (8)
NKH0  k=I k=1

where t kK (a,0) is the normalized magnetic moment for a nanoparticle in layer k

of a K-layer array located at an azimuthal angle a and rotational angle 0 on the surface of

the bead. Owing to symmetry, only the component = (-Ho0 pkK ) in the direction of

the applied magnetic field is non-zero.



Figure 3-2. Pictorial representation of a core-shell bead. The particles at an azimuthal

angle a are assumed to lie in the tangent plane to the surface, with the x and z axes in the
plane normal to the tangent plane, and coplanar with the applied magnetic field. The y
axis is in the tangent plane, and normal to the applied magnetic field.

To evaluate PkK (a)(for convenience, and because of symmetry, we drop the

explicit dependence of this quantity on rotational angle 0), we consider a planar array of

particles in the tangent plane located at an azimuthal angle a on the surface of the bead,

and establish the local (x, y,z) coordinates such that the (x,y) plane is in the tangent

plane, with the y axis normal to the applied magnetic field, and the z axis normal to the

tangent plane, as shown in Figure 3-2. Under these conditions, H0 is in the (x,z)plane,

forming an angle a relative to the x-axis, the y component of k (a) is zero, and the

component of PkK (a) in the direction of the applied magnetic field is

PkKo (a) = CxkK cos a + PzkK sin a.

In the sections that follow, we derive the appropriate expressions for monolayer,

bilayer and trilayer coverage, and generalize these results to multilayer systems. The

predicted magnetic moments of the particles are compared for the different systems, both



for the individual layers as functions of a, and for the core-shell beads as a whole.

Experimental measurements of the magnetic response of planar nanoparticle-coated films

under different orientations relative to the magnetic field are used to validate the

theoretical predictions.

3.2.1.1 Monolayer Coverage

For a monolayer, the solution to equation (7) is

cos a sin a

'x 1- 30' 1+ 6 (9)

if only nearest neighbors are considered, where 77r = 1 for all i and j. If we also

account for interactions with second nearest neighbors, then it can be shown that

cosa sina

= 1-3.950' 1+7.950 (10)

which indicates that, depending on the value of b, the second nearest neighbor

interactions cannot generally be neglected. Third nearest neighbor interactions have only

a small effect (< 5 percent for magnetite nanoparticles) on the moments, and hence in

what follows we restrict our analysis to include only first and second nearest neighbor

interactions.

The net moment in the direction of the applied field of a particle in a monolayer at

position a is

cos 2 a sin 2 a
P,,Io (a) = sna+ = bx, cos 2 a + bzal sin 2 a (11)1-3.950 1+7.95b

Because of the dipole-dipole interactions between the particles, the average

magnetic moment does not necessarily align with the applied magnetic field direction.

The angle 0 between the applied magnetic field and the net nanoparticle moment as a

function of the position on the bead surface is determined by the equation



0 = a - tan- '
(1-3.950

( 1+7.950

1+7.950
This angle attains a maximum value at a = sin-' )7.95

ma 2(1+ 2q0)

(12)

Note that at the equator

and at the pole the nanoparticle magnetic moments are aligned perfectly with the applied

field.

The magnetic moment for the bead is obtained using Equation (8):

pbead(1) = Pbead,l = jr/2 ( os 2 a + b1 sin 2 a osada = (2b, + bA, 3 X I Zi

3.2.1.2 Bilayer Coverage

For a bilayer system, the individual x components of the magnetic moments for

the two layers are related by

(1-3.95 )pX +1.310Px2 = cosa
39 • 2 2.. (14)

1.31Axu2 + (1- 3.95b)px22 = cosa

for the x components, where the subscript xkK denotes the x component of the

moment for the kth layer in a K-layer system. The z components can similarly be shown

to be related by

(1+ 7.95)/P,2 - 2.620Pt 2 = sina

-2.62•,Uz 1 + (1 + 7.95)Pz22 = sina
(15)

These sets of two equations each can be solved simultaneously to yield

cos a
PX12 =/22 = - 21-2.640

sin a
/'z1 =Pz22 1+5.340 (16)

from which we can show

(13)



cos2 a sin 2 a
2 (a) = U2 (a) - +  = b cos2 a +b2 sin2 a (17)

1-2.640 1+5.34 2

The net contribution of each layer to the overall magnetic moment of the core-

shell bead is then

.lbead,12 = O1 bead,22  b 2 b1 ) (18

This result is similar to that for the monolayer, except that the numerical

coefficients for q are different, reflecting interactions between particles in the different

layers, in addition to the intra-layer interactions. Note that the moments are the same for

particles in both layers, because of the symmetry of the interactions between the two

layers.

For the bead as a whole, we have

',bead(2) = '1 bead,12 + bead,2 2b2 +b12 (19)

3.2.1.3 Trilayer Coverage

For a trilayer system, the equations obtained for the x and z components for each

of the three layers are

(1-3.95•)x,~ ,3 + 1.31 'Px23 + 0.8630•x33 = cosa

1.31 Ilq +(1- 3.950) x23 + 1.31 ux33 = cosa (20)

0.863/x~u + 1.31~xI23 + (1- 3.950) q x33 = cosa

and

(1+ 7.950)•uZ, - 2.620•z23 - 1.30•z33 = sina

-2.62 zl ••(1+ 7.95b0)P23 - 2.6201,z = sina (21)

-1.30~p 1 1 - 2.620Pz23 + (1+ 7.95)~uz33 = sina

respectively, with solutions



(1-5.26+)cosa
xl3 "= x33 8.7602 -7.04b+ 1 X13

(1+10.560sina

'z'=z3' 39.190 2 +14.6 +1 -zl ina;

S(- 6.57s) osa
23 8.76 2 -7.04 1 23cosa

x23 8.76b 2 -7.04b +1 3

(1+11.88bsina sina
·z 23 39.190 2 +14.6+1 sina

The resulting total moments for the individual layers on the bead are

bead 1 bead 33 2b +bb (24)

and the total moment for the trilayer coated bead is

bead(3) b + b L (2b b
Pbead(3) = 3x13 Zý3 3 23 2

(25)

3.2.1.4 Multilayer Coverage

The average magnetic moments for particles in an array of K layers can be

developed in the same way as above. The solution to the resulting system of linear,

independent equations can be written in matrix form as

Px = K'IK cosa = bx cosa; pz = Kz'IK sina = bz sina

where •x and z are K-dimensional vectors with components

respectively, and IK is the K-dimensional unitary vector. The matrices are

1-3.950

1.31

0.86

0

0

0

1.31

1-3.950

1.31

0

0

0

0.86

1.31

1-3.950

0

0
0

0

0.86

1.31

0

0

0

0

0

0.86

0

0

0

0

0

0

0.86
0
0

0

0
0

1.31

0.86

0

(26)

PxkK andUz ,

0

0

0

1-3.954

1.31

0.86

0

0

0

1.31

1-3.950

1.31

(27)

(22)

(23)

0

0

0

0.86

1.31
1-3.950

Kx=



and

1+7.95b -2.62 -1.30 0 0 ... 0 0 0 0 0

-2.62 1+7.950 -2.62 -1.30 0 ... 0 0 0 0 0

-1.30 -2.62 1+7.950 -2.62 -1.30 ... 0 0 0 0 0

0 0 0 0 0 ... -1.30 -2.62 1+7.9541 -2.62 -1.30

0 0 0 0 0 ... 0 -1.30 -2.62 1+7.950 -2.62

0 0 0 0 0 ... 0 0 -1.30 -2.62 1+7.950

(28)

respectively. Note that these matrices are pentadiagonal as a particle in an intermediate

layer interacts with particles in the two layers above and the two layers below the layer in

which that particle resides (only first and second nearest neighbors are considered).

The integrated moments over the bead surface for each layer, and the total

moment for the multilayer shell-coated bead are then obtained from

lbead,Hio = (2b x +bz) (29)

and

/
1

bead(K) K/bead,o (30)

respectively, where I K denotes the transpose of the unitary vector.

3.2.2 Magnetic Moments Under Larger Magnetic Fields

Under higher magnetic fields, where the linearity assumption no longer holds, the

magnetic moment can be normalized more conveniently by the moment under saturation

conditions ( p, VX / l) to yield the dimensionless equation

- pm. PHo -
. - - T. (31)

1PoV l+PfH, '

K =



where

(32)
H o P H o j i r 1(7 + 1 I

1h .' /3Ho

The quantity e = / PfH o = 1 at sufficiently high field strengths, and can be used

as a perturbation parameter in a perturbation expansion of the field strength according to

(33)

Retaining only terms up to first order, we can show that the magnitude of Ti can

be approximated by

1/2 T0 ° I
1+ ( ) 2 (34)

(35)

and equation (32) can be expanded to give, to first order,

(ý . -0 - --0

S+JFJi = o +.

j, 0@ flHoI

Thus, we have

ad = si

and, since To = Ho H = 1,

(36)

(37)

yTi= TY+ + Iff T2

Tj = (T * Y

TI pHO 3y i -HO)-HO#, = 03 7
1- + pfHo ; 9



Thus, to first order in e, we have

i6HO A 3+  r j Ho)-H

(1+PHo)6 j i i,/3Ho0 i

(1+ PHoT,)
1 + /3H0

The net moment in the direction of the applied field is, then,

,o0 = 6:i =

If we consider only first and second nearest neighbors in a monolayer, we can

readily show that

.>,o (a = 900) = i (a = 900)
'oVX

(40)
(1 + PHo))

60
(lI (+ Ho)

and

('I + 30(1 + PHo)
S(a= 0) (a = 00)) = o  _

,HO PoV 2
(41)

1+,8H°(1+ 1+Ho)
((1 + PHo))

(38)

(39)

1+ 0 -lrý3 (i - HO0 2
1+ 3(iJ'n) 2- 1

(1+ PHo ) ,i 17i



3.3 Experimental Section

Monodisperse magnetic nanoparticles were synthesized using seed mediated

growth technique as developed by Sun et. al. [37].

3.3.1 Materials

Iron(III) acetylacetonate (97%), Benzyl ether (99%), 1-2 hexadecanediol (97%),

ethanol, oleic acid (90%) and oleylamine (70%) were purchased from Sigma Aldrich

and used as received.

3.3.2 Magnetic Nanoparticle Synthesis

Two millimoles of Iron (III) acetylacetonate, 10 mmol of 1-2 hexadecanediol, 6

mmol of oleic acid, 6 mmol of oleylamine and 20 ml of benzyl ether were mixed in a 3

neck flask and were stirred continuously under a blanket of nitrogen. The temperature

was ramped up slowly to 200 oC (2.5 OC /min) and the mixture was kept at this

temperature for 2 hrs. Finally, the mixture was refluxed at 300 OC for 1 hr. The resulting

black mixture was cooled to room temperature and ethanol was added, followed by

centrifugation at 7000g to separate out the magnetic nanoparticles. The centrifuged

product was resuspended in hexane and used for seed-mediated growth.

3.3.3 Seed-Mediated Growth of Larger Nanoparticles

Two millimoles of Iron(III) acetylacetonate, 10 mmol of 1-2 hexadecanediol,

2mmol of oleic acid, 2 mmol of oleylamine , 20 ml of benzyl ether and 80 mg of seeds in

4 ml of hexane were mixed in a 3 neck flask and stirred continuously under a blanket of

nitrogen. The mixture was kept at 100 oC for 30 mins and at 200 oC for lh. Finally, the

mixture was refluxed at 300 oC for 30 mins. The magnetite was recovered using the

procedure outlined above. The resulting magnetic nanoparticles were used as seeds for

subsequent synthesis and growth of particles. In this manner stable 12 nm nanoparticles

were synthesized.



3.3.4 Angle-Dependent Magnetization Experiments on Planar
Nanoparticle Films

Five microliters of 12 nm magnetite nanoparticles at dilute concentrations (0.1;

0.02; 0.01 and 0.005 wt%) were deposited on a silicon substrate and dried under air. The

magnetization curves for each sample were measured at orientations of the sample plane

relative to the direction of the applied external magnetic field of 00, 450, and 900 using a

vibrating sampling magnetometer (ADE Model EV5).

3.4 Results and Discussion

We exploit below the results of our theoretical analysis to evaluate systematically

the effect of the orientation of an externally-applied magnetic field on the apparent

magnetic susceptibility of superparamagnetic nanoparticles in structured arrays. The

causes of the apparent orientational dependence of the magnetic susceptibility are the

unbalanced contributions to the local magnetic field experienced by any given particle in

the array by the fields associated with the dipoles of neighboring particles.

The H0 -component of the effective magnetic moments of individual

particles as a function of the orientation of the array relative to the applied field is shown

in Figure 3-3 for mono-, bi- and tri-layer coated beads; the parameters used in these

simulations are those for the magnetite nanoparticles used in this work. The magnitude

of the magnetic moment (or apparent magnetic susceptibility) is highest for the field

applied in the plane of the arrays, i.e., at the equator of the core-shell bead where a = 00,

where the fields associated with the individual magnetic dipoles reinforce the applied

field, enhancing the alignment of the dipoles with the applied field. At the poles of the

bead, on the other hand, where a = 90', the full parallel alignment of the dipoles is

unfavorable and the fields from neighboring particle dipoles counteract the applied field

so that the net aligning field experienced by the particles is reduced relative to that for

non-interacting particles. The effects are most significant for monolayers at the equator,
where the apparent magnetic susceptibility is about 66 percent larger than the true

susceptibility of non-interacting particle suspensions; at the poles the magnetic



susceptibility is reduced by about 45 percent. Also, since the fields in adjoining layers in

multi-layer systems tend to cancel each other to some extent, the maximum increase in

apparent magnetic susceptibility for a bilayer is only slightly greater than half that for the

monolayer case. For the trilayer, the apparent susceptibilities are smaller yet again, with

the two outer layers exhibiting a larger apparent susceptibility than the middle layer. In

this case, the middle layer interacts with the top and bottom layers, with fields acting in

opposite directions, which results in a lower induced magnetic field acting on the

nanoparticles and hence a lower change in apparent magnetic moment. The top and

bottom layers, on the other hand, are subjected to asymmetric induced fields and thus

exhibit larger apparent magnetic moments than do the particles in the middle layer. At

the poles of the bead the relative importance of particle interactions does not change,

except now it is a reduction rather than an increase in apparent susceptibility that is

predicted for these systems. There is a crossover point near 600 at which the magnetic

susceptibilities change order i.e., the monolayer apparent susceptibility becomes less than

that of the bilayer or trilayer cases.
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Figure 3-3. The effective magnetic moments of nanoparticles in a core-shell structure
depend on their orientation with respect to the applied magnetic field, as determined by
their azimuthal position on the bead surface. Monolayers exhibit a stronger response to
the applied field than do multilayers owing to the compensating effects of the particle



dipole magnetic fields in adjacent layers. Note that for trilayers, the effective magnetic
moments of particles depend on whether they are in the middle layer or in the two outer
layers. The moments are normalized with respect to their values in the absence of
interparticle interactions.

The effect of interparticle interactions on the average orientation of the individual

particle dipoles relative to the direction of the applied magnetic field is shown in Figure

3-4 for the mono-, bi- and trilayers. At the equator and the poles of the core-shell bead,

the nanoparticle dipoles align with the applied magnetic field, but at all other angles there

is a significant deviation from such alignment, which is a maximum at azimuthal angles

close to 600.
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Figure 3-4. The average dipole orientation relative to the externally-applied magnetic
field for nanoparticles arrayed as layers on a bead surface depends on both their
azimuthal position on the bead surface and on their location within the multilayers.

Figure 3-5 shows that the magnetic moment of a multilayer core-shell bead

approaches that of a non-interacting dispersion of nanoparticles, i.e., that of the bulk

material, as the number of layers increases. Under these conditions, the interactions of a
particle in a given layer with particles in adjacent layers on either side of that layer cancel

each other, so that the particle collection behaves as an isotropic bulk material. It is only

the layers of particles near the surfaces, for which the inter-layer interactions are



unbalanced, that give rise to the orientation effect observed here - with an increasing

number of layers, the fraction of particles participating in 'unbalanced' interlayer

interactions becomes smaller and hence the orientation effects are also diminished.
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Figure 3-5. The integrated magnetic moments of core-shell beads as determined by the
number of layers arrayed on their surfaces, showing the importance of the magnetic
properties of the particles themselves, as reflected in the parameter 0. The moments are
normalized with respect to their values in the absence of interparticle interactions.

The effect on the average particle magnetic moment of changes in ", for citrate-

coated magnetite particles, and 6, for surfactant stabilized nanoparticles, relative their

base-case values, is shown in Figure 3-6. With increasing values of X, the fields

associated with the dipoles of individual particles increase, and the induced fields as the

dipoles are aligned with the externally-applied magnetic field become more significant

for a given field strength Ho. There is a trade-off, however, since the theoretical

predictions are valid only at low field strengths far from saturation, where the identity

M = XH is valid, and with increasing X, the results are restricted to ever-lower external

applied fields. At low external field strength the induced field due to interparticle

interactions is comparable to the external field and this is reflected in the higher value of

the component of the net magnetic moment in the direction of the applied field. The

0



interparticle interactions decay rapidly with the separation distance between the particles

(-1/6 3) as shown in Figure 3-6 (b).

negligible.
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Figure 3-6. Effect of magnetic nanoparticle properties on the normalized magnetic
moments of particle monolayers at different azimuthal positions on the bead surface. (a)
The larger the intrinsic bulk magnetic susceptibility the greater the effects on the
magnetic moments (o = 0 nm). (b) With increasing surfactant layer thickness, the

0 15 30

U)
E
0O

OZ)U)
Ct

U)
N
CUIE
0z



particles are further apart and the interparticle interactions are weaker (" = 3.33 for
magnetite, dp = 8 nm).

At higher magnetic field strengths, the linearity between magnetization and

applied magnetic field no longer holds, and we use the perturbation analysis results to

explore the effect of the orientation of the nanoparticle layer relative to the applied field

on its magnetic response. The predicted magnetization, ao• , for a monolayer is shown

in Figure 3-7 as a function of normalized applied field 8PH o for the two extremes of

orientation, 00 and 900, and for different values of the effective magnetic susceptibility,

b; the predicted curves are shown only for conditions where /IO /H o <: 0.1, in accord

with the retention of only the first order term in the perturbation expansion, i.e., the error

in the predictions is less than one percent. Clearly, the effect seen at low field strengths,

where the normalized response at 00 is greater than that at 900, as predicted by equation

(11) continues into the higher field strength region, described by Equation (39). The

differences between the normalized magnetizations for the two orientations decrease until

at very high field strengths, the curves for any given value of b approach each other. The

effect of b is quite dramatic, in that with increasing 0 the difference between the two

orientations increases significantly; the magnetization for an array in the plane of the

field (i.e., a = 00) increases with increasing b, since the induced dipoles add to the

external applied field, while it decreases when the array is perpendicular to field, when

the dipoles counteract the applied field.

Three important points emerge from these calculations. First, it has been shown

that a monolayer coated core-shell bead has the largest net interparticle interactions,

resulting in a higher magnetic moment as compared to the bulk material. Second, with a

higher number of magnetic layers, the effect of these interactions dwindles, and above

about eight layers we can assume that the particles on the bead behave as bulk material.

Finally, the dependence of the moment of the nanoparticle within the shell of a

nanoparticle coated bead on its position on the bead surface provides insight into the

importance of orientational effects in the magnetic response of multilayered nanoparticle

coatings. It is difficult to verify these observations experimentally, however, because it is



challenging to prepare uniformly coated multilayer core-shell magnetic beads, and it is

not possible to probe the surface of a bead directly to measure the moments of individual

nanoparticles within the layers. However, we can study experimentally the effect of

orientation and the number of nanoparticle layers on the effective magnetic properties of

b 1 n

Cýo 0.8
4-.

(U
N
) 0.6

(U
0.4

N 0.2

o 0.0
0 2 4 6

Applied Magnetic Field, PH0

Figure 3-7. The magnetic moments normalized with respect to the saturated
magnetization show a strong dependence on orientation of the planar array relative to the
magnetic field. With increasing bulk susceptibility, the magnetization increases for
particle arrays aligned with the magnetic field (0O), but decrease when the particle layers
are normal to the applied field (900). Only results for which q0 / PH o < 0.1 are shown;
thus the perturbation predictions are accurate to within one percent.

planar nanoparticle assemblies, which can be prepared by depositing a nanoparticle

suspension drop on a planar substrate and evaporating the suspending solvent, as

described below.

The number of nanoparticle layers deposited on a planar substrate can be

controlled by the concentration of the nanoparticles in the suspension used to prepare the

sample, assuming that the area occupied by the droplet is unchanged during the

deposition process and is unaffected by the nanoparticle conceni The orientation,

a, relative to the applied field direction of the nanoparticle layers on a curved surface (as

0 0.0



on beads) on the magnetic moment can be determined by comparing the x values from

the magnetization studies performed on planar samples at different angles (i.e. the angle

between the external magnetic field and the sample plane) [34, 36, 38].

The magnetic nanoparticles used in the preparation of the deposited layers were

prepared as described in the Experimental section; the TEM micrograph given in Figure

3-8 shows that the particles were reasonably monodispersed and spherical, and of size 12

nm.

Figure 3-8. TEM micrograph of the 12 nm nanoparticles showing them to be
monodisperse and regularly shaped.

Magnetization curves obtained for a nanoparticle multi-layer on a planar substrate

oriented at three different angles relative to the applied field (a = 00, 450, and 900) are

shown in Figure 3-9(a); similar curves were obtained for all samples, in which the

effective number of layers varied from 1 to 20. In no cases did we observe hysteresis or

remanence in the samples, indicating that the particles retained their superparamagnetic

properties even when deposited in packed layers. It is clear that the effective magnetic

susceptibility, given by the slopes of the curves under low field conditions, as shown in

Figure 3-9(b), is dependent on the orientation of the sample relative to the applied field.

The magnetization curves, with the magnetic moments normalized with respect to the

saturation magnetization, are shown in Figure 3-9(c), and are in good agreement with the



values predicted using the perturbation model and reasonable values of 0 and jf for

magnetite, again showing the importance of the orientation of planar arrays on their

response to an applied magnetic field.
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Figure 3-9. Experimental magnetization curves for planar arrays at different orientations
relative to the applied magnetic field, as determined by vibrating sample magnetometry.
(a) Complete magnetization curves showing the superparamagnetic properties of the
particles as reflected in the absence of remanance, and that the saturation magnetization
depends on the orientation. (b) The magnetization at low field strengths showing that the
magnetic susceptibility, proportional to the slope, depends on the orientation of the array.
(c) Comparison of normalized experimental and predicted magnetization curves.

The effect of orientation on the normalized magnetic moments is shown in Figure

3-10(a) where the experimental results are compared favorably with model predictions

for the orientational dependence of a multilayer system. An unexpected observation in

these experiments was the orientation dependence of the saturation magnetization, i.e.,

the magnetization curves for the same sample have different asymptotic values at high

field strengths, which is not predicted by the particle interaction models presented in this

paper. The saturation magnetization is shown in Figure 3-10(b) to vary by about ten

percent on changing orientation from 0 to 900, but not significantly on nanoparticle

concentration (i.e., number of layers). Additional experiments and theoretical analyses

indicated that such effects are not due to particle anisotropy or irregular surface coatings,

and that they are completely reproducible.
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Figure 3-10. The effect of orientation on (a) the normalized magnetic moment and (b)
the saturation magnetization.

When normalized by their respective saturation magnetizations, however, these

curves show the same trends with orientation as predicted by the theoretical perturbation
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analysis and shown in Figure 3-9(c). Thus, the observed effects of orientation on the

magnetization curves are real, even when the effect of the anomalous variation of the

saturation is accounted for in the normalization of the curves.

The fractional changes in magnetic moment when the layers are orientated at 450

and 900, relative to the moment at an orientation of 00, i.e., AP/0uo = (p• - .o)/u , are

shown in Figure 3-11 as a function of the nominal number of layers deposited on the

substrate. For a small number of layers the experimental and predicted results agree well,

but the deviations between the two become more significant as the number of layers

increases. These deviations can be attributed to non-uniformities in the layers deposited

on the substrate surface.

n ;

0.4

C 0.3

•< 0.2
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Figure 3-11. The relative changes in magnetic moment with changes in orientation of
the nanoparticle arrays of varying number of layers. The solid lines are the predicted
effects for a uniforma layers, while the broken lines are adjusted to allow for the fact that
the layers are not uniform, but beaded.

The Atomic Force Microscopy (AFM) results shown in Figure 3-12 indicate that

the multilayer-coated surfaces are not uniform in thickness, but consist of small islands of

nanoparticle clusters surrounded by regions in which the effective number of layers is

considerably smaller than the nominal number calculated based on the assumption of
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uniform layers. The size of these clusters also depends on the surface concentration of

particles, being smaller for lower surface concentrations, i.e., for lower nominal numbers

of layers. We can account for these effects approximately by noting that it is primarily

the outer layers that contribute to the deviations from bulk-like behavior, while the inner

layers exhibit bulk-type behavior, which is isotropic. Thus, we can assume that the net

changes in magnetic moment can be ascribed primarily to effects associated with the

particles in the outer layer or two, and not to the particles in the inner layers. The fraction

of the total nanoparticle population that reports to the surface layers on a beaded surface

can be significantly greater than when the surface is coated uniformly. To account for this

increased surface effect, we revised the estimate of the moments using the equation

Ap = [fsPa,s +(1 - fs)Pa/,b] -- fS/oS + (1 f)/so,b] f(pa,s -PO,s) (42)

-o fsPo,s + (1- f,)Uo,b sfo0,s s(1 - fs)P0u,b

where fs is the volume fraction of the nanoparticles in the surface layers, and

pa,s and Ua,b are the moments of the surface and bulk nanoparticles, respectively, at an

orientation angle of a. Note that we assume that the bulk moments are not dependent on

the orientation, and allow only for variations in the moments of the surface layers with

orientation. The fraction fs can be estimated if it is assumed that the islands are

hemispherical in shape with diameter d, and the surface layer has a thickness given by the

nanoparticle diameter, ap, as shown schematically in Figure 3-12(b). Then, we have, for

a, << d,

6a
f dP (43)

d
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Figure 3-12. AFM pictures showing that the nanoparticle arrays on planar substrates are
not uniformly distributed, but consist of islands of clustered particles ranging in size from
100 to 500 nm. Larger islands are formed when more particles are deposited on the
substrate, i.e., for larger nominal numbers of layers.

For typical values of d - 300 to 500 nm, corresponding to the nominal numbers of

layers from 2 to 20, we obtain f - 0.2 to 0.1. We use the values for gts and tb calculated

for each system with particular number of layers to estimate the correction factors to

allow for the beaded layers, with the results shown using the broken lines in Figure 3-11.

Clearly, orientational effects can be described well by our modeling approach even when

there are significant non-uniformities in the layers.

3.5 Conclusions

We have shown both theoretically and experimentally that the magnetization

curves of structured layers of superparamagnetic nanoparticles can depend on the

orientation of the layers relative to the applied magnetic field. The primary reason for

this effect is that the magnetic fields of the dipole alignments induced in neighboring
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particles by the field acting on them can act either in concert with the applied magnetic

field, as when the field direction and the array are co-directional, or can oppose it, as

when the array is normal to the applied field. These results have implications for the

effective magnetic properties of magnetic nanoparticle-coated beads, where the layers

adopt all orientations relative to the applied field, the equatorial particles being aligned

with the field and the particles at the poles of the bead being arrayed perpendicular to the

external field. For magnetite particle monolayers, for instance, about a 30 % increase in

effective magnetic susceptibility is predicted relative to the case when the particles do not

interact. As the number of layers increases, however, these effects are diminished, which

we attribute to the reduction in the asymmetry of the interactions between particles in

adjoining layers when in the 'bulk' state relative to when they are in the outer layers of

the particle arrays.
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Chapter 4

Synthesis of Flexible Magnetic Nanowires of
Permanently-Linked Core-Shell Magnetic Beads

Tethered to a Glass Surface Patterned by Microcontact
Printing

4.1 Introduction

Magnetic colloids often undergo reversible aggregation in the presence of a

magnetic field. Once the magnetic field is removed, however, thermal energy disrupts the

structures and the magnetic colloids return to their original freely dispersed state. By

linking the magnetic beads together permanently once they are arranged in the magnetic

field, it is possible to preserve their chain structure even after the field is removed.

Depending on the chemistry used to link the beads, these chains can be either flexible [1,

2] or rigid [3].

To date, there has been limited research into the formation of permanently linked

magnetic chains, also known as magnetic nanowires [4]. Goubalt et al. [4] have exploited

depletion forces due to the presence of high molecular weight polymers to create the

desired flexible nanowires by bridging the polymer between the magnetic colloids. The

environmental sensitivity of the depletion effect can, however, make the chains very

sensitive to exposure to different medium conditions. Gast et al. [1] have synthesized

flexible chains of superparamagnetic beads linked permanently by a flexible polymer

using either amine coated beads linked by gluteraldehyde, or streptavidin-coated beads

linked with a poly(ethylene) glycol linker bifunctionalized with biotin. These linked

chains can be used as micromagnetic actuators and micromechanical sensors [2],

micropumps and micromixers [5], and, in DNA and other bio-separations, as obstacles to

impede the convective transport of biological species [6, 7]. Once these permanently

linked chains have been formed, they can be fixed on channel surfaces to prevent their

drag-induced convective migration in microfluidic flow processes. To this end, Lyles et.
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al. [8] showed that magnetic colloids patterned on a glass surface can serve as templates

for chain growth from the patterned spots. Their multi-step approach relied on an intial

seeding of the system with magnetic colloids to adsorb them on functionalized spots

patterned on the surface by microcontact printing, followed by a second step in which

additional magnetic colloids were introduced to the microchannel and the chains were

grown from the surface-attached colloids and linked by reaction.

We have developed a flexible, inexpensive, versatile, and efficient one-step

method to produce stable, tethered, flexible chains of magnetic colloids that is simpler to

implement than the multi-step approach suggested by Lyles et al. [8], and that uses

inexpensive chemical reagents for the covalent coupling of the beads. This approach can,

in principle, be used with any magnetic colloidal particles, including those used by others

[1, 2, 4, 8] in which the magnetic materials are distributed as nanoparticles uniformly

throughout the polymer beads. Here, however, we have elected to use core-shell particles

consisting of polystyrene beads coated with polyelectrolyte (PE) layers and maghemite

(y-Fe20 3) nanoparticles [9], because the magnetic and surface properties can be

manipulated readily by selecting the types, quantities and ratios of the various surface

coatings used. We were also able to grow the chains directly in a Poly(dimethylsiloxane)

channel using this technique. In this Chapter, we provide details of the synthesis

procedures developed for the tethering of flexible chains either to glass surfaces or

directly inside PDMS microchannels, and report on some aspects of the equilibrium

responses of these chains to varying magnetic fields. The response of the chains to a

rotating magnetic field can be exploited for micropumping. This is entailed in the final

part of the Chapter.

Figure 4-1 illustrates the procedures for both the synthesis of the core-shell

magnetic colloids and the one-step assembly, linking and tethering of magnetic chains of

these beads to form the magnetic nanowires within a glass or PDMS microchannel. The

glass surface of the glass microchannel was patterned with an amine functionality by

microcontact printing [10, 11] to enable selective localization of primary beads on the

microchannel surface and their subsequent covalent attachment through an amidation

reaction between the patterned amine functionality and the carboxylated bead surfaces.
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The PDMS microchannel was uniformly coated with amine functionality. The non-

adsorbed core-shell magnetic beads remaining in suspension formed well-defined chains

across the channel, anchored to the surface-adsorbed beads, on application of a magnetic

field. The adjacent beads in any given chain were linked together by a diamine

compound using amidation chemistry to yield tethered, flexible magnetic nanowires.

PDAMAC 0 0 Magnetic
S PSS -0o00 0 0 PDAMACL 000

0 PDAMAC- PAA

PS PDAMACIPSS/PDAMAC PDAMACIPSSIPDAMAC/magnetic
coated beads nanoparticles/PDAMAC/PAA

Magnetic beads injected
0 0 in a microchannel under

PDMS PAe
' rohannfelSssembled f romSenrtta c lass

Permanently linked

slide Chained beads in a tethered flexible chains
Negatively charged glass slide microchannel

patterned with amine

PDMS Microchannel

Figure 4-1. Process for producing permanently linked flexible tethered magnetic chains.
(a) Preparation of carboxylated core-shell magnetic beads using the layer-by-layer
technique [3, 9] (b) Directed assembly and chemical linking of magnetic colloids on a
patterned glass surface in a microchannel to form tethered magnetic chains of controlled
height, flexibility and diameter.

4.2 Experimental Section

4.2.1 Carboxylated Magnetic Beads

Core-shell magnetic beads were prepared as discussed in an earlier

communication [3] using a method similar to that developed by Caruso et al. [12]. In

brief, the charge on the initially negatively charged sulfonated polystyrene (PS) beads

(Spherotech, average diameter 790 ± 19 nm) was manipulated by successively coating

the beads with positively charged poly (diallydimethyl) ammonium chloride (PDAMAC,

MW 150,000, Aldrich) and negatively charged polystyrene sulfonate (PSS, MW 70,000,

Aldrich) polyelectrolyte layers. In a typical PE coating process, 0.5 mL of a 0.5 wt%
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solution of PS beads was suspended in an aqueous solution of 0.5 mL of PE (1 mg/mL).

After 30 min of adsorption, the beads were separated by centrifugation at 7000g for 10

min and re-suspended in water. This process was repeated three times. After three PE

coatings to generate a PDAMAC/PSS/PDAMAC multilayer, the positively charged beads

were coated with negatively charged citrate-coated magnetic nanoparticles prepared

using Massart's method [13]; the complete coating of the beads is evident from the

Scanning Electron Microscope (JEOL-6060 SEM) images shown in Figure 4-2. The

resulting magnetic beads were again coated with PDAMAC and finally with polyacrylic

acid (PAA, MW 100,000, Aldrich). During the coating of the magnetic beads with PAA,

the pH of the PAA solution was adjusted to 7.0 to ensure that the PAA was negatively

charged. This process resulted in the formation of magnetic beads functionalized with

carboxylic acid groups. Reversal of the surface charge on the PS beads during the

sequential layer-by-layer assembly of PE layers was confirmed by Zeta potential

measurements (Brookhaven, Zetapals). These beads, which have been characterized in

detail elsewhere [3], were superparamagnetic and chained reversibly in the presence of an

external magnetic field.

Figure 4-2. SEM micrographs of (a) plain PS beads and (b) magnetic nanoparticle-
coated beads. The samples were sputter coated with gold for better contrast. The
thickness of the magnetic coating was estimated to be 25 nm based on the differences in
the diameters of the coated and the uncoated beads.

4.2.2 Patterning

A glass slide coated with PE multilayers was patterned with amine functionality

in a regular array of equally-spaced spots of defined size. To initiate the deposition of PE
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multilayers [14], the glass slide was cleaned in a plasma chamber under oxygen (Harrick

Scientific PDG-32) and was alternately dipped in PDAMAC and PSS solutions (5

mg/mL, 0.1 M NaC1) for 20 min. After each coating of PDAMAC or PSS, the glass slide

was rinsed with MilliQ water for 1 min. In this manner, five PE bilayers were coated on

the glass slide with PSS as the final coating.

Poly(dimethylsiloxane) (PDMS, Dow Coming) stamps with periodic arrays of

dots [15] were utilized to pattern the amine functionality on the PE-coated glass slides.

The stamp was cleaned with soap water solution and dried under nitrogen. It was then

exposed to 0.5 wt%, pH 10, poly(allylamine) (PAL, MW 65,000, Aldrich) solution for 10

min. After this inking process the stamp was dried under nitrogen and placed on the

multilayer-coated glass slide for 30 min. A microchannel was constructed using

patterned and plain glass slides separated by a teflon spacer of desired thickness (12 ponm,

25 wn, 50 pmn or 75 Ipn) selected according to the required the channel height.

PDMS microchannels with a height of 75 wm and a width of 2 mm were prepared

as explained in Chapter 2 (Section 2.2.3). The channel was filled with PDAMAC solution

(5 mg/mL, 0.1 M NaCl) followed by rinsing with MilliQ water after 20 min. This was

repeated with PSS (5 mg/mL, 0.1 M NaC1) solution and finally with PAL solution (0.5

wt%, pH 7) to get a uniform coating of amine groups .

4.2.3 Linking

0.2 mL of 0.1 wt% of carboxylated beads with 0.005M of 1-[3-

(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC, Aldrich) and 0.005 M

of diamine crosslinker was injected into microchannel (Glass or PDMS Microchannel).

Either 2,2'-(ethylenedioxy)bis(ethylamine) (EBE, MW 148.21, Aldrich) or Polyethylene

glycol (PEG) diamine (XTJ 502, MW 2000, Huntsman) was used as the diamine linker.

The microchannel was then placed in a uniform magnetic field created by two

neodymium-boron-iron magnets (200 mT). The reaction was quenched after 2 h by

injecting 10 ýiL of 2-mercaptoethanol (Aldrich). The product formed in the microchannel

was viewed under an optical microscope (Zeiss, Axiovert 200) using a 20X/1.0 objective,

and images were captured at a speed of 30 frames/s using a digital camera (Hitachi,
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KPM1A) with Scion Image processing software (NIH public domain). Rotating

magnetic field created by applying sinusoidal current I = Iosin(w t) and I = Iosin(wot+ 7r/2)

which have a phase lag of 7r/2 on two orthogonal pairs of magnetic coils. This resulted

in a homogeneous magetic field in the horizontal direction. The magnetic coils were

prepared by wounding 2000 turns of 20 gauge copper wire on a cast iron core. The ac

sinusoidal current was generated using a multifrequency synthesizer (HP 8904A). The

current was magnified using an amplifier. Magnetic field up to 200 mT was generated

using this set up.

4.2.4 Micropumping

10 pl of 10 pm PS beads (Spherotech) were injected in the PDMS microchannel

with the tethered chains. The microchannel was placed in the rotating field set up. We

waited for 2 hr for the system to reach equilibrium before the field was turned on.

4.3 Results

Following the injection of the carboxylated beads, EDC, and linker molecules into

the microchannel, the formation of permanently linked chains was controlled by the

sequence of bead adsorption on the patterned spots, chaining of remaining suspended

beads, and covalent linking of the chained beads to each other and to the surface. The

positively-charged patterned dots were covered with negatively-charged beads due to

electrostatic interaction, the number of adsorbed beads on each spot being determined by

the relative sizes of the dots and the projected areas of the beads. When a transverse

magnetic field was applied to the suspension, chains of beads were formed, emanating

from these adsorbed particles. The carboxylic acid groups on adjacent beads in a chain

were linked together by a diamine linker molecule via amidation, while the carboxylated

beads adsorbed to the surface of the glass slide were similarly attached covalently to the

glass side by amidation reaction with the amines on the patterned area. This led to

permanently linked flexible superparamagnetic chains tethered to the glass surface. The

time scale for adsorption and chaining was on the order of milliseconds [16], while that

of the linking reaction was an hour or more. Some permanently linked untethered chains

were also formed during this process but they could be washed off easily.
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The length of the nanowire was controlled by the spacer thickness while the

diameter and spacing of the chains or chain clusters were determined by the spot patterns

established during the microcontact printing. The optical micrographs in Figure 4-3 show

clearly the spacing of the patterned spots on the glass surface, and the effect of tethered

chain length (or microchannel height; 25 mn in Figures 4-3(a) and (b) and 75 mun in

Figures 4-3(c) and (d)) on the relative orientations of the chains in the absence and

presence of an applied magnetic field. The short chains, once formed, tended to retain

their vertical orientation even after the magnetic field was removed, and are seen end-on

as a pattern of dots in Figure 4- 3(a). These chains responded to a new magnetic field by

aligning in the direction of the applied field, as shown in Figure 4-3(b). The longer

chains exhibited different behavior in that, in the absence of a magnetic field, they tended

to bend downwards under their own weight to form the loops seen in Figure 4-3(c),

which generally unfurled on the application of a new magnetic field (Figure 4-3(d)). Not

all the chains unfolded, however, because some of the looped chains were tethered at

both ends; although this behavior was observed primarily when the spacer thickness was

greater than 50 upm, some of the chains in the shallower channels also formed loops

(Figure 4-3(b)), probably because of non-idealities and fluctuations in the chain

orientation during growth.
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Figure 4-3. Optical micrographs of PEG linked chains, or magnetic nanowires, tethered
to the amine patterned glass surface. The chains respond to an externally applied
magnetic field with field direction indicated by the arrows. (a) In the absence of a
magnetic field the short (25 pm), relatively inflexible nanowires orient vertically and are
observed end-on, while (b) they align uniformly with the applied magnetic field. (c) With
no applied field the longer, more flexible chains (75 pm) bend over under their own
weight to form loops. (d) Unless tethered at both ends, the loops formed by the long
chains unfold and align with the applied magnetic field.

The strong presence of loops for the longer chains can be attributed to disruption

of their alignment with the magnetic field during growth by perturbations due to thermal

fluctuations. With sufficiently strong misalignments the gravitational force can

overcome the magnetic field and pull the growing end towards the glass surface; the

resulting U loop configuration formed is also a stable equilibrium state [2] for long chains

and they continue to align in that fashion rather than reverting to the straight chain

configuration. If the looped end encounters a patterned amine group it will react with and

tether the chain to the glass surface, forming a permanent U loop. While all the longer

nanowires appeared to bend under their own weight, and many of them later unfurled to

align with an applied magnetic field, some of the chains are clearly tethered at both ends

and the U loops thus formed also respond to the magnetic field. The configurations

taken on by the loops under different applied field directions are shown in Figure 4-4.

Since the two ends of the U loops are fixed in their orientations, they affect the chain

configurations quite remarkably, and the shapes taken on by the loops, whether simple

arcs or more complex S-shaped structures, depend on the direction of the applied

magnetic. For instance, in the top panels in Figure 4-4, the orientation of the loop at the

anchor point does not necessarily line up with the magnetic field direction, suggesting
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that the chains are quite stiff locally and that some directional orientation is imposed on

them by the local chain structure rather than by the magnetic field. The loop shown in

the lower panels of Figure 4-4 behaves as expected, its orientation following the direction

of the magnetic field fairly well although there is a kinking of the chain near the anchor

points, which may be due to the local stiffness of the structure there.

F -y

" %4 %F

Figure 4-4. Optical micrographs showing the response of flexible chains tethered at both
ends (U bends) to an external magnetic field. The circles indicate tethering points and the
arrows indicate the direction of the external magnetic field.

The length of the diamine linker molecule governs the chain flexibility [1]. For

example, chains linked with PEG diamine (MW 2000) were found to be quite flexible as

they formed different structures when the field was applied in different directions. As

shown in Figure 4-5, depending on the initial conditions, the chain configuration can be

straight, hairpin, or S-shaped. The magnetic force tending to align the nanowire is

counteracted by the viscous drag and elastic restoring forces acting on the moving chain

as it responds to the applied magnetic field. The balance of these forces gives rise to the

different structures observed, which are trapped in local minimum energy configurations.
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Figure 4-5. Optical micrographs showing the response of a PEG linked flexible chain to
an applied magnetic field. The initial orientation of the chain and direction of the applied
field govern the final configuration of the chain. The circles indicate the point of
tethering.

In contrast, the chains linked with EDE, a small molecule with a molecular weight

of 148, are stiffer, and, as shown in Figure 4-6, no loops or bends were formed during the

directional response of these chains to the magnetic field.

Figure 4-6. Optical micrographs showing the response of an EDE linked chain to an
applied magnetic field. The circles indicate the point of tethering. The chains are
comparatively rigid relative to their PEG counterparts in Figure 4-4.

The PDMS stamp used for printing the amine functionality on the glass slides

consisted of a regular array of dots with diameters ranging from 1.25 pm to 9 pm while

the center-to-center distance between two dots was kept constant at 18 pm. The dot size

governed the number of chains that grew from each dot and hence the degree of

clustering of the chains. For 1.25 pm-sized patterned dots, single magnetic chains were

observed while clusters of chains resulted when larger dots were stamped on the glass

slides, on which multiple beads could be adsorbed and serve as nuclei for multiple chain
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formations. Figure 4-7 shows that chains grown from 1.25 gIm dots are essentially single

strands, while those cultivated on 8 gtm dots are thicker and consist of multistranded

ropes of these magnetic bead chains. No single-stranded chains were observed to grow

from the larger dots indicating that the attractive interactions between the chains growing

from the same dot induce clustering of these chains. The interaction energy between two

magnetic chains decays rapidly with interchain distance and results in chain attraction if

they are out of registry and repulsion if they are perfectly aligned [17]. For our beads, the

cut off distance is on the order of the bead diameter, i.e., - 500 nm, which governs the

minimum distance of approach between two rigid chains before they will attract each

other, and hence sets the maximum desirable grafting density of the chains on the surface.

In reality when the magnetic beads assemble in this way, the free ends of the chains sway

due to Brownian motion, and they are not perfectly aligned with neighboring chains,

which results in a mutual attractive interaction. Also, the interaction between the curved

chains is much stronger [18] than that between straight chains and decays less rapidly

with distance. Thus, chains growing from the same dot are prone to clustering.

The dynamic response of these chains to spatial and temporal changes in magnetic

fields is expected to provide unique opportunities for the enhancement of some

microfluidic fluid processing operations, and is currently under active study in our

laboratories and elsewhere. Preliminary results show that, when subjected to rotating

magnetic fields, these tethered chains can be used as micropumps and mixers for the

movement and blending of liquid streams and for the manipulation of microparticle

distributions in microchannels.
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Figure 4-7. Optical micrographs of the chains growing from patterned (a) 1.25 pým dots
and (b) 8 [tm dots. Individual chains for the most part grow from 1.25 ýpm dots, while
those growing from 8 pLm dots are clustered.

The response of the chain to the rotating magnetic field is shown in Figure 4-8.

The chains are rotate synchronously with the rotating magnetic field up to a critical

frequency above which they become asynchronous. The frequency at which the chains

transition from synchronous rotation to asynchronous rotation depends on the chain

length. This critical frequencyf, can be calculated using the model developed in Chapter

2 to capture the kinetics of the chain to the applied magnetic field (Section 2.4). Using

equation (7) and (8) in Chapter 2 we get

16,Lacosin(20) = l(1)
9tUos2X2H 2 In(L / 4a) (1)
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In the regime when sin(20) < 1, the chain will be in phase with the rotating field. For 25

pm and 50 pm chain the critical frequency was found to be - 0.2 Hz and - 0.14 Hz

respectively for H = 0.01 T. The chains in Figure 4-8 are - 25 pm in length and hence

they rotate synchronously with the 0.1 Hz rotating magnetic field.

Figure 4-8. Optical micrographs of the response of the PEG 2000 tethered chains to a
rotating magnetic field. The average chain length is 25 pm and the corresponding f, is
0.2 Hz. The chains are in phase with the applied rotating field which has a frequency of
0.1 Hz. The arrow indicates the instantaneous direction of the magnetic field.

There was no control on the tethering density of the chains when they were grown

in a PDMS microchannel since the bottom surface of the channel is uniformly coated

with amine groups. The distance between the chains was governed by the concentration

of the beads. When the magnetic beads are present in excess the distance between the

two chains approaches - 500 nm which is governed by the dipolar action between the

chains (as discussed above).

123



Figure 4-9 illustrates the results from the micro pumping experiments. The

motion of the 10 num particles was captured by the microscope camera. The average

length of the chain tethered in PDMS microchannel was 50 jm. The frequency of the

applied was kept at 0.2 hz which was close to f, for the corresponding length. The

strength of the applied field was 0.01 T. The Reynolds number at the given length scale

is on the order of 10-4 . At such low Reynolds number the flow should be reversible and

hence no pumping action should be observed but the snapshots at different time clearly

indicated that the beads were pumped forward by the rotating tethered chains. At

frequency closed to f, the chains exhibit "jerky" asynchronous motion. The "jerky"

motion of chains ensured that the elastic energy is released only in one direction which

resulted in the preferential movement of the beads in that direction. The motion of the

beads was not smooth and they moved for ward in a pulsating fashion. The results

presented here are very preliminary and more work is required in this regard.

Figure 4-9. Optical micrographs illustrating the micropumping action of the chains
tethered in a microchannel. The dashed circles track the beads at different times
(t3>t2>tl) which indicates that the beads are moving forward. The faint outline of the
tethered chains can be seen in the background.
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4.4 Conclusions

We have developed an inexpensive and efficient one-step method to create

permanently linked chains of sub-micron magnetic beads having varying flexibility, and

have successfully tethered them to a patterned glass surface using simple amidation

chemistry. The flexibility of the resulting nanowires was governed by the molecular

weight of the linker molecule and their length by the height of the microchannel in which

they were synthesized. The chain diameter is determined both by the bead size, and by

the number of beads adhering to each dot in the microstamped, patterned array. The

tethered chains respond to a rotating magnetic field and can be used as micropumps.
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Chapter 5

Other Aggregation Techniques

5.1 Introduction

In Chapter 2 and 4 we used electrostatically stabilized magnetic nanoparticles to

coat charged polystyrene (PS) beads to create novel core-shell magnetic beads. Spherical

PS beads were used as templates because they were easily available commercially.

However the use of electrostatic interaction to adsorb nanoparticles on a surface is a very

general technique and can be extended to a charged template of any shape [1, 2]. Self

assembly of non-spherical magnetic structures under an applied magnetic field has not

been explored because of the difficulty in synthesizing these structures. Template based

techniques can be used but the challenge is to make non-sperical charged templates.

It is well known that in aqueous solutions, above the critical micelle

concentration (CMC), surfactants assemble into micelles, spherical or cylindrical

nanostructures. Further increases in surfactant concentration result in the self-

organization of micelles into periodic hexagonal, cubic, or lamellar mesophases [3]. The

surfactant structures have been used as template to create porous ceramic materials [4-6]

but have not been used to adsorb nanoparticles. In the first part of this chapter we will

discuss other templates that were explored to induce controlled clustering in nanoparticle

suspensions. In the first section of this chapter we will discuss some work done to create

ring shaped and icosahedra shaped magnetic clusters. The disk and icosahedra shaped

charged templates were created from mixtures of surfactants.

In the second part of this chapter, we will discuss some work done on creating

magnetic clusters in situ without using any templates. The focus here was to synthesize

magnetic nanoparticles stabilized with different polymers. The polymer on the

nanoparticles was then directly crosslinked using ionizing radiation to create nanoparticle

clusters. We used a graft copolymer of Poly(acrylic) acid and Poly(ethylene) oxide to

stabilize magnetic nanoparticles in aqueous solution because of the ease of crosslinking
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PEO with ionizing radiation [7, 8]. The advantage of Radiation crosslinking is that yields

high purity materials free of residual impurities such as crosslinking agents, catalyst or

byproducts. The basic principle of radiation crosslinking is that all forms of ionizing

radiation interact with matter by transferring energy to the electrons orbiting the atomic

nuclei of target materials. These electrons may then be either released from the atoms,

yielding positively charged ions and free electrons, or moved to a higher-energy atomic

orbital, yielding an excited atom or molecule (free radical). These ions, electrons, and the

excited species are the precursors of any chemical changes observed in irradiated material

[9].

5.2 Surfactant as Templates

We have used the method of Dubois et al. [10, 11] to synthesize charged

surfactant templates which could be used for the adsorption of the nanoparticles. They

have shown that organic rigid nanodisks of controlled size with positively charged edges

can be created by a balanced mixture of cationic and anionic surfactants, when the

cationic surfactant is in excess. The counter ion for the anionic surfactant should be

hydroxide while that of the anionic surfactant should be the hydronium ion. The overall

size of the disks can be continuously adjusted from micrometer to nanometer size by

controlling the ratio of the surfactant. Similarly when the anionic surfactant is in excess,

negatively charged icosahedras are formed. However the icosahedras had positively

charged edges. Coating these templates with magnetic nanoparticles should result in ring

and cage shaped magnetic clusters (Figure 5-1).

5.2.1 Experimental Section - Surfactant Templates

5.2.1.1 Materials

Cetyltrimethylammonium hydroxide (CTAOH) (0.5 M in water) was purchased

from Acros Crganics (NJ). Myristic acid (MA) (99.5%), iron(III) chloride hexahydrate

(97%), iron(II[) chloride tetrahydrate (99%), ammonium hydroxide (28 wt% in water),

sodium hydroxide pellets (NaOH, 99.99 wt% in water), nitric acid (HNO3, 70% in water)

and polylysine (FITC grade) were obtained from Sigma-Aldrich (Milwaukee, WI).

129



Figure 5-1. Cartoon of disk and icosahedra shaped templates. Both the structures have
positively charge edges.

5.2.1.2 Preparation of Disks and Icosahedras

The anionic mole fraction r and volume fraction of the surfactants are the two

controlling parameters. r is defined as

r = [C13COO-]/([CTA] + [C 13COO-]) (1)

When r < 0.5 disks are formed and when r > 0.5 icosahedras are formed. The size of the

disk and icosahedra formed can controlled by varying r in the given range. CTAOH and

MA were mixed at a volume fraction of 2 wt% in degassed water. The entire process was

performed under a nitrogen hood to avoid contamination with carbon dioixde. Disks

were synthesized with r = 0.39 and r = 0.454 which corresponded to disk diameters of 30

nm and 2600 nm respectively. 1 ium icosahedras were synthesized with r = 0.63. The

mixture of surfactant was stirred for 72 hrs. The milky solution was then heated to 60 °C

and cooled down with continuous shaking. The solution transformed into a clear solution

on cooling, indicating the formation of disks or icosahedras.

5.2.1.3 Nanoparticles Syntheis

Citrate-coated magnetic nanoparticles with an average diameter of 10 nm (as

estimated by TEM) were synthesized using Massart's method [12]. In brief, a 2:1 molar
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mixture of FeC13.6H 20 and FeC12.4H 20 was precipitated in the presence of 0.75M NaOH

at 1000C. The black precipitate was decanted magnetically and after washing with 1M

HNO3 was dispersed in deionized water and heated to 900 C, following which sodium

citrate was added. The resulting stable magnetic fluid was reprecipitated by addition of

excess acetone, separated magnetically, and redispersed in deionized water. This stable

dispersion was centrifuged at 18000 rpm for 3hr to remove excess citrate ions. The

resulting precipitate after centrifugation was finally suspended in deionized water to yield

stable magnetic fluid.

5.2.1.4 Nanoparticle Adsorption on the Templates

3 ml of 0.1 wt% surfactant solution with r = 0.45, r = 0.40 and r = 0.63 was

mixed with 0.014, 0.275 and 0.01 ml of 0.5 wt% of magnetic fluid respectively. The

mixture was continuously shaken for 20 mins.

5.2.2 Characterization

Transmission electron microscopy (TEM) experiments were performed on a

JEOL 2010 (200 kV) instrument. Samples were prepared by evaporating dilute

suspensions on a carbon-coated film. The median size and polydispersity of the

magnetite particles was determined by measuring 150 particles.

Dynamic light scattering (DLS) experiments were performed with a Brookhaven

BI-200SM light scattering system at a measurement angle of 900. The autocorrelation

function was fit with an exponential fitting software program to extract the diffusion

coefficient, and the Stokes-Einstein equation was used to convert the diffusion coefficient

to the hydrod.ynamic diameter. Intensity-average size distributions provided by the light

scattering software were converted to number average for further analysis.

The zeta potential of particle suspensions was measured on a Brookhaven

ZetaPals Zeta Potential Analyzer. Particle suspensions were diluted to 0.005 wt% Fe304

with 1 mM NaCI prior to measurement. Approximately 2 mL of the sample was loaded

into the electrode cell. The electrophoretic mobility (,ue) of the particles was measured
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over fifteen electrode cycles. The Smoluchowski equation was used to convert the

electrophoretic mobility to the zeta potential (c):

P= -r e  (5-1)

where q7 and e are the viscosity and dielectric constant of the dispersion medium. The

quoted zeta potential was an average of five measurements.

Confocal microscopy was used to detect the magnetic aggregates. FITC grade

polylysine was used to fluorescently label the sample. For each 100 P1 aliquot of the

disk or icosahedra solution, 2.6 ul of 0.01 wt% of polylysine was added. Polylysine

being positively charged tagged on the negatively charged nanoparticles which adsorbed

on the templates. The fluorescently labeled solution was added to the multi-well culture

plate for visualization under the microscope.

The replica cryo-TEM samples were prepared through the quick freeze-deep etch

(QFDE) method. First, a 1.5 p4 L drop of aggregate solution was deposited on the top of a

metal plate, and the drop was frozen by inserting the metal plate rapidly into propane,

which was cooled to about -186 'C by liquid nitrogen. Second, the frozen drop was

transferred to a sealed chamber, where it was equilibrated and evaporated for 36 min

under a vacuum of 10-7 Torr. This served to evaporate the propane and to sublime some

of the water, thereby producing a bas-relief of any aggregates that were present near the

drop surface. In the third step, the frozen drop was coated first with a thin platinum film

of thickness 2-3 nm; and then with a 20-30 nm carbon film. Finally, the frozen drop was

removed from the chamber and kept at room temperature for a few minutes. After the

remaining ice had melted, the metal plate was plunged into water and the replica film

floated to the water surface. The film was then placed on the grid and readied for TEM

examination. The prepared samples were examined using a JEOL 2010 (200 kV) electron

microscope.

In vitrified cryo-TEM a few (2-3) microliters of an aqueous suspension stored at

25 ° C in a controlled environment vitrification system (CEVS, University of Minnesota;
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the temperature within the CEVS box is controlled precisely, and the relative humidity is

kept at >90%) were withdrawn in a pipet, deposited on a specially prepared lacey carbon

electron microscope grid, and blotted to remove excess liquid. This processing took place

within the CEVS unit, preventing water evaporation and temperature changes in the

sample. The grid bearing the sample was plunged into a liquid ethane reservoir cooled by

liquid nitrogen to a temperature close to its freezing point. The rapid heat transfer away

from the grid vitrified the sample. The specimen was transferred under liquid nitrogen to

the cooled tip of a cryotransfer stage (CT3500J, Oxford Instruments) which was then

inserted under positive dry nitrogen pressure into the JEOL 1200 TEM and imaged at

slight underfocus (1-3 jpm). The sample temperature was maintained at -165 oC at all

times during imaging, to prevent the amorphous-to-crystalline phase transformation in

ice.

5.2.3 Results and Discussion

Dynamic light scattering was performed on solutions of pure nanoparticles, pure

disks and on the mixture of nanoparticles and disks. Figure 5-2 shows the intensity

average plot of the measurements. In the DLS spectra of the mixture of disks and

magnetic nanoparticles, the peak corresponding to pure magnetic nanoparticles

disappeared and that the new peaks are further to the right of pure disks. This indicates

that the particles are adsorbed on the disk. The number average size of the nanoparticle

was 12 nm, disk was 376 nm and that of the nanoparticle and disk mixture was - 390 nm

(Figure 5-3). The increase in number average size further confirmed the hypothesis that

the nanoparticles get adsorbed on the templates.
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Figure 5-2. Dynamic Light Spectra of pure magnetic nanoparticles, pure disks and the
mixture of disks and nanoparticles. Signature spectra of magnetic nanoparticles
disappear in the presence of the disk template, indicating their adsorption on the disk.

Zeta potential was used to measure the surface charge on the particle and the disk.

Disks were positively charged with a zeta potential of 65 mV and magnetite nanoparticles

were negatively charged with a zeta potential of -34 mV. The mixture of disks and

nanoparticles was visualized using confocal microscopy. FITC labeled polylysine was

used as a fluorescent label. Several disk shaped objects were observed but it was difficult

to focus on them because they were under constant Brownian motion. Hence it was not

possible to reconstruct the 3D view of the object. The sectional view captured at a focal

plane is shown in Figure 5-4a. The micrograph indicates the adsorption of the

nanoparticles on to the disks but did not confirm that the nanoparticles were only

adsorbing on the edges. Cryo-TEM was performed on the disk nanoparticle samples to

verify this. Figure 5-4b shows the Cryo-TEM micrographs. The micrograph shows that
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the particles adsorbed randomly on the disk surface. The charge difference between the

surface and edges of the disk is not sufficient to enable selective adsorption of the

nanoparticles on the edges only.
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Figure 5-3. The number average size of pure magnetic nanoparticles, pure disks and the
mixture of disks and nanoparticles. The number average size of the mixture of disks
and nanoparticles compared to that of the pure disk is higher by 14 nm which is
approximately the size of magnetic nanoparticle (- 12 nm).

Confocal (Figure 5-5a), Cryo-TEM (Figure 5-5b) and Freeze fracture (Figure 5-

5c,d) experiments were performed with icosahedra-nanoparticle mixtures. Micrographs

show random adsorption of nanoparticles on different facets of the icosahedra.

Electrostatic affinity value between the edges and the faces of the icosahedra is not large

enough to obtain selective adsorption of the particles on the edges only.
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Figure 5-4. (a) Confocal micrograph at a given focal plane of the disk coated with
magnetic nanoparticles. (b) Cryo-TEM micrograph of the disk nanoparticle mixture. The
particle adsorb randomly on the disk surface and edges.

Our unsuccessful attempt to obtain magnetic rings and magnetic cage like

structures lead to the formation of disk and icosahedra shaped clusters. Icosahedra shaped

magnetic boxes can be used as a delivery vehicle for drugs, genes etc [13-16]. Recently

Dendukadi et al. [17] have devised a scheme to generate different shaped micron size

colloids like, disks, rings, pyramids etc. by photo-crosslinking poly(ethylene glycol)

using the technique of continuous flow lithography [17]. The templates can also be made

negatively charged by photo-crosslinking a mixture of poly(ethylene glycol) diacrylate

and acrylic acid. These are very stable templates and we can use the Layer-by-Layer

method as discussed in Chapter 2 to coat the negatively charged templates with magnetic

nanoparticles. Magnetic rings represent an interesting class of material for fundamental

studies [18-20]. The next section focuses on the modeling the behavior of the magnetic

rings in the presence of a magnetic field. We predict how a single magnetic ring would

respond to an external magnetic field. We extend this modeling to a system of interacting

rings where we calculate that the magnetic rings will form links under an applied

magnetic field. We then discuss the experiments performed to verify this behavior of
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Figure 5-5. (a) Confocal image of icosahedra nanoparticle mixture at a given focal

plane. The particle adsorbed on all the faces of the icosahedra resulting in uniform

fluorescence from around the edges. (b) Cryo-TEM micrograph also shows random

adsorption of the nanoparticles on the faces of the icosahedras. (c) Freeze fracture

micrograph of pure icosahedra mixture illustrates smooth walls which turn grainy (d) due

to the adsorption of the nanoparticles.

the magnetic rings. We also extended this study to the self-assembly of magnetic disks

under an applied magnetic field. Negatively charged ring and disk shaped templates were

generously donated by Dhananjay Dendukuri from Doyle & Hatton group at MIT and

were made magnetic for this study.
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5.2.4 Modeling of the Behavior of the Magnetic Rings

In this section we have calculated the magnetic interaction energy between two

magnetic rings. The rings are composed of magnetic nanoparticles as illustrated in Figure

5-6. The purpose of the calculation was to predict how the magnetic rings would self

assemble in the presence of an external magnetic field. This is analogous to the behavior

of the magnetic colloids which aggregate reversibly in the presence of an external

magnetic field to form chain like structures in the direction of the external magnetic field

[21-24]. The magnetic rings can either stack or link together as shown in Figure 5-7

under the application of the magnetic field.

Ho

y

Figure 5-6. Schematic of a Magnetic Ring.

I

Figure 5-7. Representation of a) Stacked magnetic rings b) Linked magnetic rings. The
arrow indicates the direction of the applied field.

The interaction energy Udip between two magnetic dipoles i and j, separated by

distance ri (Figure 5-8) is given by

138

rllLllruUmm*Y·····l*~31
ill ~Y*~~"'Y"""_ I



1 m•.m -3(.h)(r.m)
- 3 (1)

'+JP o

where yo is the magnetic permeability of free space and P is the unit vector in the

direction of r.

A

ot F/

Figure 5-8. Interaction between two magnetic dipoles.

The induced magnetic dipole moment rin of the bead is given by

m = JPoVM (2)

where M is its magnetization under a field H, V is the volume of the magnetic

material. The total field H, acting on the bead at position i is the sum of the external

magnetic field Ho and the local magnetic field at point i induced by the neighboring

nanoparticles in the ring

H, = H o + Hj (3)

where the field induced by dipolej at position i is
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47rru rj3

IMI [- M,I where Ms is the saturation magnetization of the nanoparticles, when the

external applied field, Ho is sufficiently high to saturate the magnetic dipole of the

nanoparticles. Under this condition we can neglect the induced field so that Hi = Ho.

We can estimate this value of Ms from the magnetization curve of the nanoparticle

(Figure 5-9).

Consider a ring of radius R made up of N magnetic nanoparticles. The magnetic

moment the saturated nanoparticle will be in the direction of the external magnetic field

and is given by

m = uoVM, (5)

The ith particle in the ring interacts with all the other (N-1) particles in the ring.
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Figure 5-9. Typical magnetization curve of a magnetic nanoparticle. In this modeling we
assumed that the external field was high enough to saturate the dipole.

Assuming pairwise interaction, the total dipolar interaction energy of a

nanoparticle 'i' with all the other nanoparticles in the ring can be written as

Uidip = U
J•1

(6)

Summing U,, over for all
j1i

the particles in the ring gave the total magnetic interaction

energy U"H ef

1"dip
U ring = - Ui

2 i=1
(7)

The factor of V2 in equation (7) accounts for the double counting in a pairwise interaction

scheme.

Consider a ring on a xy plane with field applied in the z direction (Figure 5-10).

The magnetic dipole of the nanoparticle and permeability (4i7uo) was set to unity for ease

of calculation.

V V

Figure 5-10. Schematic of a Magnetic ring on a xy plane with the external field in z
direction.
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In the presence of the magnetic field, the ring will attain the orientation at which

ringU se"" is minimum. The minimum orientation was calculated by rotating the ring in all

possible direction and calculating User for each direction. The orientation of a ring in

a 3D space was expressed by defining a unit vector normal to the plane of the ring.

Using spherical co-ordinate system (Figure 5-11), the unit vector ni can be written as

S= sin 0 cos D X + sin 0 sin D 5 + cos 02

0 0 <•; O <0 :< (D •z-
(8)

k, j, 2 are the unit vectors in x,y and z directions respectively.

0 Hn

Figure 5-11. General orientation of a ring defined using spherical co-ordinate.

The next challenge was to parameterize a ring in any general orientation i.e.

assigning xyz co-ordinates to the particles on the ring. The methodology of Gram-

Schmidt orthogonalization was adopted (Figure 5-12). Given an arbitrary basis set of

independent vectors, it is possible to construct the orthogonal basis. For example if

B= b,,b2,b 3 , is a set of independent vectors, then we can construct an orthogonal basis

{ui,u2,u 3) where
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So if ^', Yj' are two mutually perpendicular unit vectors which are perpendicular

to the unit normal vector n^ , then any point on the circle can be parameterized in the

polar co-ordinate system as follows:

r = c +R cos(a) + R sin(a) (14)

a = (j - 1), O < j<N

where, J is the co-ordinate of the centre. In our case since the circle is at the origin J is

(0,0,0). Yis the angular distance between two nanoparticles and is given by

2a2

S= cos-' (1 2)

R 2 (15)

Figure 5-12. Orthogonalization of the ring orientated in a general direction using Gram-
Schmidt Method.

The orthogonal set for each orientation was found by setting b, = t and picking

b2 and b 3 from the set of unit vectors (k, 5, 2). The (k, 5', 2) indices of n^ were

compared. The unit vectors corresponding the lowest two of the three were set as b 2 and
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b_ . For example, if (i, 5,2) indices of ,i were given by (0.31, 0.60, 0.74) then the ^

and 5 indices are the lowest of the three. So ^ = b 2 and 3 = b-3 . This ensured that the

basis set B={ ,_b 2,b 3 } was composed of independent vectors.

Using equation (1), (6), (7) U rg was estimated for all the possible orientations of

the ring in the space. The results presented here are for N=32 and a =12.5 nm. Figure 5-

13 describes the potential energy surface of the ring when the external field was in the x

direction. The minimum energy of the ring was when either 0 = 0 or 0 = n/2. In either

case, it meant that the minimum energy orientation of the ring was when the applied field

was in the plane of the ring.

x 10-3

-2
200

200

0 _< < ir

Figure 5-13. Potential energy surface of a magnetic ring when the field is applied in the

x direction. The inset shows that U`9"g is minimum for the orientation attained when the

ring is rotated around the x axis.
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Similarly when the external field was in y direction the minimum energy

orientation corresponded to when 0 = 0 or 0=0. This corresponded to the orientation

when the applied field was in the plane of the ring (Figure 5-14).

3

2

1

0

-1

-2
200

150 200
150100

100

Figure 5-14. Potential energy surface of the magnetic ring with the applied field in the
direction.

Similarly, minimum orientation case when the field was in z direction was when 0

-n/2 (Figure 5-15), which ensured that the applied field was always in the plane of the

ring. Next we modeled the interaction potential between two rings to determine the most

favorable orientation of the combined system. Figure 5-16 shows two rings with one at

the origin and the second ring at distance d on the y axis.
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Figure 5-15.
direction.

Potential energy surface of the magnetic ring with the applied field in the z

z

6T:

x.I

Figure 5-16. Schematic of interaction between two magnetic rings.

The total magnetic interaction energy between the two rings can be written as
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U ring =Uselfring + inter ring  (16)

where Usefng was same as calculated before for the single ring. Unter ng accounts for

the interaction between the nanoparticles of the two rings. Equation (16) was evaluated

numerically to find the mutual orientation between the two rings that will minimize U~ing

The magnetic field was fixed in the y direction. During the calculation, ring 1 was fixed

on the xy plane and ring 2 was spanned in all possible directions. Figure 5-17 illustrates

the total potential energy surface estimated for the two ring system. U rin was found to be

minimum when 9 = 0 or n, which will be the case when the two rings are on the xy

plane with the applied field in the plane of the rings. This means that in the presence of

the external magnetic field the rings will aggregate in a fashion as shown in Figure 5-18.
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Figure 5-17. Potential energy surface of the system of two interacting rings.
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(a) Z (b)

HO
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Figure 5-18. (a) Mutual orientation between the magnetic rings at which Uing is
minimum. (b) This means that the rings will link not stack in the presence of the
magnetic field.

5.2.5 Experimental: Synthesis of Magnetic Rings and Disks

5.2.5.1 Materials

Poly(diallydimethyl) ammonium chloride (PDAMAC, MW 150,000), sodium

chloride (NaC1), iron(III) chloride hexahydrate (FeC13.6H 20, 97 wt%), iron(II) chloride

tetrahydrate (FeC12.4H20 99 wt%), sodium hydroxide pellets (NaOH, 99.99 wt% in

water) and nitric acid (HNO3, 70% in water) were obtained from Aldrich (Milwaukee,

WI). All chemicals were used as received. Negatively charged rings (25 pm O.D. x 20

pm I.D. and 12 pm height) and disks templates (60 pmn Diameter x 15 pm height) and

were synthesized by Dendukadi et al. and were used as received.

5.2.5.2 Methods

The negatively charged templates were made positively charged using a layer-by-

layer polyelectrolyte adsorption technique [25]. In a typical process, 0.5 mL of the

template solution with - 2000 templates was suspended in an aqueous solution of 0.5 mL

of 1 mg/mL PDAMAC (0.1 M NaC1). After 30 min of adsorption, the templates were

separated by centrifugation at 2500g for 10 min and resuspended in water. This process

was repeated three times. The aqueous solution of negatively charged magnetic
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nanoparticles (200pL, concentration 0.05 wt% in water) was then added to the positively

charged PDAMAC coated templates (0.5 ml). Magnetic nanoparticles were synthesized

according to the method outlined in Chapter 2 [26]. After continuous shaking for 30 min,

magnetic nanoparticle coated templates were recovered by centrifugation at 2500g for 10

min. They were again coated with PDAMAC and magnetic nanoparticles using the

procedure outlined above to yield magnetic disks and rings.

5.2.5.3 Characterization

The magnetic response of the rings and disks was viewed under an optical

microscope (Zeiss, Axiovert 200) using a 20X/1.0 objective, and images were captured

using a digital camera (Zeiss Axiocam, MRC) with Axiovision image processing

software. A magnetic field was generated using hand held 0.2 T neodymium-boron-iron

magnets (McMaster Carr).

5.2.5.4 Results and Discussion

Magnetically-responsive rings and disks were synthesized using the layer-by-

layer technique in which the templates were coated sequentially with positively and

negatively charged polyelectrolytes, and magnetic nanoparticles. Figure 5-19 shows the

optical micrograph of the response of the magnetic rings to the applied field. An isolated

magnetic ring flipped when the magnetic field was applied. The new orientation (Figure

5-19b) ensured that the applied field was in the plane of the paper. This is in line with the

model predictions (Figure 5-15). When the two rings were close enough to interact

magnetically, they linked together in the direction of the magnetic field. This equilibrium

orientation agrees with the model predictions (Figure 5-17). The response of the

magnetic disks to the applied field was similar to that of the rings (Figure 5-20). We can,
thus, conclude that the magnetic structures with high aspect ratio will link together along

the edge in the direction of the applied magnetic field. This is the minimum energy

configuration with the direction of the applied field in the plane of the structure formed.
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Figure 5-19. (a) Optical micrograph of a magnetic ring under a zero applied field. (b)
When the magnetic field was applied in the direction perpendicular to the plane of the
paper (0), the ring stood up on its edge. The magnetic potential of the ring is minimized
when the applied field is the plane of the ring. (c) Optical micrograph of the two
magnetic rings in the absence of the magnetic field. (c) The magnetic rings linked
together reversibly when the magnetic field was applied (arrow indicates the direction of
the field). The scale bar on the optical micrograph represents 10 wmn.
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Figure 5-20. (a) Optical micrograph of a single magnetic disc under zero applied field.

(b) The micrograph represents the response of the magnetic disk to a magnetic field
applied in the direction perpendicular to the plane of the paper. (c) When the magnetic
disks are in close vicinity to interact, (d) they linked together in the direction of the
applied magnetic field.

5.2.6 Conclusions: Surfactant and Polymeric Templates

Surfactant templates can be used to create exotic magnetoresponsive structures

like disks and icosahedras. However, the charge difference between the surface and the

edges is not large enough to support selective adsorption on the edges to yield rings or

cage like magnetic structures. Polymeric templates synthesized by Dendukadi et al. [17]

were used to create magnetic rings and disks. Layer-by-Layer process was used to coat

these non-spherical scaffolds with magnetic nanoparticles to generate magneto-

responsive colloids. Coating ring shaped colloids with magnetic nanoparticles and

observing their behavior under an applied magnetic field provided experimental proof to

the model predictions.
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5.3 Radiation Crosslinking

Until now we have discussed and studied template based generation of magnetic

cluster. The magnetic nanoparticles in suspension adsorbed on the oppositely charged

template to generate a magnetic clusters shaped liked the template. In this section we

will describe will discuss the "templateless" coupling of magnetic nanoparticles. Unlike

the presence of electrical charge which was important in the template based technique,

the polymer coating stabilizing the magnetic nanoparticle in suspension is critical for this

method.

Radiation crosslinking is the method of linking polymeric chains by exposing the

aqueous solution of polymer to ionizing radiation [27]. The ionizing radiation generate

free radicals on the polymer chains which couple together to generate a crosslinked

network (Figure 5-19). This method has been extensively applied for crosslinking

poly(ethylene oxide) (PEO) [7, 28] to synthesize hydrogels from high molecular weight

PEO or to convert low molecular PEO into high molecular weight PEO. The degree of

crosslinking can be controlled by the amount of radiation dosage. The advantages of

radiation crosslinking are that the network formation is completed without a potentially

toxic crosslinking agent and that there are no chemical functional groups in the

crosslinked structure.

PEO Crosslinked PEO

Figure 5-21. Illustration of crosslinkg of PEO chains with radiation crosslinking.
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In the following sections we will discuss a methodology for using radiation

crosslinking for generating aggregates in the magnetic fluids composed of magnetic

naoparticles stabilized with PEO. Graft co-polymer of poly(acrylic acid) (PAA) and PEO

stabilized magnetic nanoparticles were synthesized using the technique developed by

Moeser et al [29]. Carboxylic acid groups along the PAA backbone are required to

coordinate to the magnetic nanoparticle particle surface and the PEO side chains on the

graft copolymer providing steric stabilization in aqueous solution. Electron beam (e

beam) was used as a source of ionizing radiation.

5.3.1 Experimental

5.3.1.1 Materials

Polyacrylic acid (50 wt% in water, Mw = 5000), iron(III) chloride hexahydrate

(97%), iron(II) chloride tetrahydrate (99%), and ammonium hydroxide (28 wt% in water)

were obtained from Aldrich (Milwaukee, WI). Jeffamine XTJ-234 (CH 3-O-PEO/PPO-

NH2, EO:PO = 6.1:1, Mw = 3000) was obtained as gifts from Huntsman Corporation

(Houston, TX). All chemicals were used as received.

The amino-terminated PEO polymer used in this work consisted of random

copolymers of ethylene oxide (EO) and propylene oxide (PO) repeat units. XTJ-234

contained 6.1 EO units per PO unit, so its character is similar to that of a pure PEO chain

and designate it as PEO-NH 2 for simplicity.

5.3.1.2 Polymer Synthesis

Graft copolymers were prepared by reacting polyacrylic acid (PAA) with amino-

terminated PEO and PPO, as illustrated in Figure 5-20. 16 % of the carboxylic acid

groups on the PAA were reacted with PEO-NH 2 chains
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T = 180 OC
H2N -(CH 2CH20)--CH3

PEO-NH 2 Mw = 3000

O
II
C -NH -(CH 2CH20)- CH3n

COOH
O
II
C-NH -- (CH2CH20)- CH3n

COOH

Amphiphlic graft
copolymer

Figure 5-22. Amphiphilic graft copolymer synthesis. The graft copolymers are
synthesized by attaching amino-terminated PEO to a PAA backbone via an amidation
reaction. The majority of the COOH groups are left unreacted for subsequent attachment
to the magnetite nanoparticles.

In a typical reaction, 5 g of PAA and 33 g of PEO-NH 2 was added to a reaction

vessel. The mixture was heated to 180 oC and reacted for 2 h under a bubbling flow of

nitrogen that provided mixing, prevented oxidation, and expelled water produced by the

condensation reaction. The product was cooled to room temperature and dissolved in

water to produce a 33 wt% solution.

5.3.1.3 Nanoparticle Synthesis

The magnetite nanoparticles were produced by chemical coprecipitation in a graft

copolymer solution. In a typical procedure (Figure 5-21), an aqueous solution containing

2.35 g of iron(III) chloride hexahydrate, 0.86 g of iron(II) chloride tetrahydrate, and 3.75

g of the 33 wt% graft copolymer solution was prepared by dissolving the reagents in 37.5

mL of deoxygenated water. Deoxygenation was achieved by sparging with nitrogen

under vigorous stirring for 30 min before reaction. The resulting Fe3+ and Fe2+

concentrations were 0.22 and 0.11 M, respectively, which provided the 2:1 ratio required

to produce Fe 30 4 stoichiometrically. To begin the reaction, the aqueous solution was
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heated to 80 oC with continual nitrogen sparging and stirring. When the temperature

reached 80 oC, the flow of nitrogen was stopped, and 5 mL of 28 wt% ammonium

hydroxide were added to precipitate iron oxide in the form of magnetite. The mixture

was then stirred for 30 min at 80 oC before cooling to room temperature. After cooling,

the coated nanoparticles remained suspended in water indefinitely. This procedure

produced 1 g of magnetite in 40 mL of water, which is equivalent to a 2.5 wt%

suspension of magnetite.

Amphiphlic graft
copolymer PEO: Outer layer for

O steric stabilization in
II water
C-NH-(CH2CH20)-CH3  2 FeCI3n 3

CFeCI 2COOH

II NH4OH
C-NH-(CH2CH20)-CH3n T= O

COOHv /
COOH: Attaches to -10 nm Fe30 4

Fe30 4 surface core

Figure 5-23. Aqueous magnetic fluid synthesis. The magnetic nanoparticles are
produced by chemical coprecipitation of iron salts in an aqueous solution of the PEO-
PAA graft copolymer. Soon after Fe30 4 nucleation begins, carboxylic acid groups on the
polymer backbone bind to the particle surface, limiting particle growth and forming
nanoparticles with a polymer coating.

The magnetic fluids were purified in a Centricon-Plus 100,000 molecular weight

cutoff centrifugal ultrafiltration cell (Millipore). The suspensions were first diluted to 0.5

wt% Fe30 4 with distilled water and then concentrated to 2.5 wt% in the filter. The

polymer-coated nanoparticles were retained in the filter while unattached polymer and

ions were removed in the filtrate. This process of dilution and concentration in the filter

was repeated four times to fully remove free polymer and ions, which we confirmed by

evaporating the filtrate and measuring the mass of residual solid until none remained.
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5.3.1.4 Radiation Crosslinking

5ml of 0.5 wt% of magnetic fluid was sparged with nitrogen for 30 mins to

remove any traces of dissolved oxygen. It was then poured into a 2.5 cm culture plate

and covered with Saran wrap. The samples were exposed to the electron beam for a

given amount of time (High Voltage Research Laboratory, MIT). The exposure time

governs the amount of dosage which was varied from 0.1 Mrad - 1 Mrad.

5.3.2 Results and Discussion

Average size of the magnetic nanoparticle was found to be 25 nm from the

Dynamic light scattering measurements (Figure 5-22a). The average core size of the

magnetic nanoparticle was found to be 10 nm from the TEM measurements (Figure 5-

22b). This indicate that the polymeric shell has a thickness of - 7.5 nm.
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Figure 5-24. (a) Dynamic light scattering spectra of the magnetic nanoparticles. The
average hydrodynamic radius of the nanoaprticle was - 25 nm. (b) TEM micrograph of
the magnetic nanoparticles. The average magnetic core size was - 7.5 nm.

The size of the aggregate formed after radiation was also measured with DLS.

Figure 5-23 shows the average hydrodynamic diameter as measured from DLS as a

function of radiation dosage. The aggregate size increases with radiation dosage upto a

threshold beyond which the crosslinking of polymer chains results in gelation of the

suspension. The upper limit of aggregate size that can be made from this technique is -

60 nm which are still small enough to form any observable structures in a magnetic field.

Nonetheless, this is a very simple method to make magnetic gels. Magnetic gels have
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gained lots of interest for their potential applications as biosensors and actuators [30-33].

The magnetoelastic characteristics of these gels make them "smart materials" because

they undergo a change in shape under a presence of a magnetic field [31]. The available

methods to synthesize magnetic gels involve chemical crosslinking of the magnetic

nanoparticles in the gel matrix. Chemical crosslinker used to crosslink the nanoparticles

can contaminate the gel making them unfit for any biological applications. However

radiation crosslinking technique developed in our work is an efficient way to create non-

toxic magnetic gels. The only requirement for this method is the ability to make

magnetic nanoparticles stabilized with the polymer of interest.

Low Dosage High Dosage

Individual
Nanoparticles

Nanoparticle
Aggregates

Magnetic Gel

Figure 5-25. DLS plot of aggregation formed during radiation crosslinking as a function
of radiation dosage.
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5.3.3 Conclusions: Radiation Crosslinking

Radiation crosslinking is a very clean way to create either small size aggregates or

macro aggregates like gels. It is not a very efficient way of making intermediate size

aggregates (-200 nm-800 nm) which are of interest to us for this work. Nonetheless it is

an efficient way of making ferrogels. The polymer in the gel synthesized in our work

was PEO, which is a benign polymer. This can make these gels an attractive candidate

for novel biological applications.
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Chapter 6

Nanoparticle Size and Energy Absorption Applications

6.1 Introduction

The magnetic behavior of a magnetic nanoparticle under an applied field depends

on its size. This, in turn, affects the behavior of magnetic structures composed of

magnetic nanoparticles. The two most important properties that rely on nanoparticle size

are magnetic moment and magnetic relaxation. The magnetic moment is a measure of

the magnetization developed by a nanoparticle under an applied magnetic field and scales

linearly with nanoparticle volume (Chapter 1, equation 1). Relaxation is a measure of the

time a nanoparticle would take to come to equilibrium when the external field is

perturbed. The magnetization of the magnetic nanoaprticle in suspension can relax by

two different mechanisms after the applied field has been changed; Brownian relaxation

and Neel relaxation. Brownian relaxation is due to the rotational diffusion of the whole

particle in the dispersion [1]. Neel relaxation is caused by the reorientation of the

magnetic vector within the particle [2] . The effective time constant is governed by the

faster relaxation process. N6el relaxation time constant depends much stronger on the

particle diameter than the Brownian relaxation. In our system the nanoparticles are

adsorbed on the template, hence only Neel relaxation is operative.

Structures composed of different sized nanoparticles will respond differently to a

spatially varying magnetic field. For example when an ensemble of fixed small

nanoparticles is deflected in a magnetic field, the dipole of the nanoparticles will always

be aligned with the external magnetic field because they relax essentially instantaneously.

However for the slow relaxing particles (i.e. bigger particles) when the time scale of

impact is shorter than the relaxation time of the nanoparticle, the dipoles are misaligned

relative to the field, resulting an additional mechanism for energy adsorption that depends

on deflection and is tunable through the magnitude of the applied magnetic field (Figure

6-1). The energy penalty associated with deflection of the dipole in a magnetic field can

actually increase the rigidity modulus of the material containing the nanoparticles. This
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can be exploited in making smart energy absorbing materials. These materials will be

active only in the presence of the magnetic field and will behave normally otherwise.

V I
Hot Hot

(a) (b)

Figure 6-1. An illustration of an ensemble of (a) fast relaxing and (b) slow relaxing
nanoparticles. The time scale of the deflection is higher than the relaxation time of the
smaller particle and lower than the relaxation time of the bigger nanoparticles. The
smaller nanoparticles (a) remain aligned with the external field under deflection. The
bigger particles (b) however relax slowly and are misaligned against the field which
requires additional energy.

In Chapters 2, 4, and 6, we used - 8 nm nanoparticles to create magneto-

responsive core-shell and chain-like structures. Aqueous route synthesis of magnetic

nanoparticles was used to synthesize magnetite nanoparticles which produced

polydisperse nanoparticles with an average size of 8 nm. An organic route synthesis [3]

was adopted to produce monodisperse magnetic nanoparticles of different sizes. A

scheme was devised to transfer these nanoparticles from organic solvent to water for their

subsequent use in layer by layer assembly process. The LbL process was however not

successful due to the resulting instability of the nanoparticles in aqueous solution. We

however, studied the relaxation properties of the nanoparticles with the size ranging from

6 nm to 16 nm and explore the use of larger sized particles in energy adsorption

scenarios. The magnetization properties of the nanoparticles as a function of size were

characterized in detail. Field cooling experiments were performed on the nanoparticles

embedded in the polymeric matrix to confirm the existence of the Neel relaxation.

Impact test was performed on a matrix impregnated with nanoparticles in the

presence and absence of a magnetic field to test the hypothesis that the relaxation

163



phenomenon can be used for energy adsorption. The amount of energy adsorbed by the

nanoparticles depended on its magnetization. We used iron nanoparticles instead of

magnetite nanoparticles for the impact test experiments because they have infinite Neel

relaxation and magnetization which is much higher compared to magnetite. This

enhanced the energy absorbing capability of the matrix impregnated with the iron

nanoparticles and it was possible to measure it experimentally.

6.2 Experimental

6.2.1 Materials

Iron(III) acetylacetonate (97%), benzyl ether (99%), 1,2 hexadecanediol (97%),

ethanol, oleic acid (90%), oleylamine (70%), Poly(maleic anhydride alt-l-tetradecene)

(Mn - 7300), hexane and chloroform were purchased from Aldrich (Milwaukee, WI).

Raw material to cast Polyurethane foam was procured from Smooth-it® (Easton, PA). 25

nm iron particles were procured from Reade Advanced Materials (Providence, RI). All

chemicals were used as received.

6.2.2 Synthesis of Monodisperse Magnetite Nanoparticles

Monodisperse magnetite nanoparticles were produced using the scheme of Sun et

al. [3]. An organometallic precursor is decomposed in the presence of a mixture of

surfactants at high temperature resulting in monodisperse magnetite nanoparticles [3].

Seed mediated growth is then utilized to produce bigger size magnetite nanoparticles upto

16 nm in diameter, as described below.

Synthesis of seeds

2 mmol of Iron(III) acetylacetonate, 10 mmol of 1-2 hexadecanediol, 6mmol of

oleic acid and 6 mmol of oleylamine and 20 ml of benzyl ether were mixed in a 3 neck

flask and were stirred continuously under a blanket of nitrogen. The temperature was

ramped up slowly upto 200 oC (2.5 C /min) and the mixture was kept at this temperature

for 2 hrs. Finally the mixture was refluxed at 300 oC for 1 hr. The resulting black mixture

was cooled down to room temperature and ethanol was added followed by centrifugation
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at 7000g to separate out magnetite. The centrifuged product was re-suspended in hexane

and was used for seed mediated growth.

Synthesis of bigger nanoparticles

2 mmol of Iron(III) acetylacetonate, 10 mmol of 1-2 hexadecanediol, 2mmol of

oleic acid and 2 mmol of oleylamine , 20 ml of benzyl ether and 80 mg of seeds in 4 ml

of hexane were mixed in a 3 neck flask and stirred continuously under a blanket of

nitrogen. The mixture was kept at 100 oC for 30 mins and at 200 oC for lh. Finally the

mixture was refluxed at 300 oC for 30 mins. The magnetite was recovered using the

procedure outlined above. The resulting magnetite nanoparticles can then be used as

seeds for subsequent synthesis. In this manner stable nanoparticles up to 16 nm were

synthesized in 3 cycles.

6.2.3 Phase Transfer of Magnetic Nanoparticles

Poly(maleic anhydride alt-1-tetradecene) solution in chloroform was mixed with a

solution of monodisperse nanoparticles in chloroform (100 polymer units per nm 2) [4].

The mixture was stirred for 2 hrs at room temperature. The solution was sonicated for 20

min and the solvent was evaporated. The solid was dissolved in water and sonicated for

5 min. The aqueous nanoparticles were then adsorbed on the PS beads using the

technique described previously (Chapter 2, Section.2.3.1).

6.2.4 Synthesis of Foam with Iron Nanoparticles

. The monomer and the curing agent to cast PU foam were mixed in a 1:1 ratio in

a 100 ml beaker. The iron nanoparticles were stirred in the precursor mixture (30 wt%) to

create a uniform dispersion of particles in the foam. The resulting composite was cured

for 2 hrs. A cylindrical shape piece was cut out from the cured matrix and was used for

the drop ball test.

6.2.5 Characterization

Transmission electron microscopy (TEM) experiments were performed on a

JEOL 2010 (200 kV) instrument. Samples were prepared by evaporating dilute
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suspensions on a carbon-coated film. Superconducting Quantum Interference Device

(SQUID) experiments using a Quantum Design MPMS instrument were conducted to

determine relaxation behavior and magnetization curve for native magnetite

nanoaparticles. In the drop ball test a polycarbonate ball weighing 4 g was dropped onto

a polyurethane/nanoparticle foam from a height of -150 cm through a transparent acrylic

tube guide, with a impact velocity of 5.4 m/s. A horseshoe type permanent magnet was

used to generate 0.15 T of magnetic field across the foam. The trajectory of the ball was

recorded by a high speed digital video camera (Phantom v 5.0, Vision Research Inc.) at

1900 frames per second.

6.3 Results and Discussion

6.3.1 Relaxation Behavior

The TEM micrographs of magnetite nanoparticles of different diameters

synthesized at different stages by the organic route are shown in Figure 6-2. Using seed

mediated growth we were able to make monodisperse nanoparticles from 6nm - 16 nm.
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Figure 6-2. TEM images of magnetite nanoparticles at different stages of seed mediated
growth. (a) 6 nm diameter (b) 12 nm diameter (c) 16 nm diameter nanoparticles.

The N6el relaxation time of a magnetic nanoparticle is given by the expression

I"N 1 = 1(KV) (1)
rN fo (1)

where f o is frequency term which is - 109 for magnetite, K is the anisotropy constant of

the material, V is the volume of the magnetic nanoparticle and kB is the boltzmann

constant and T is the temperature. Note that the N6el relaxation time scales with the

exponential of the volume of the particle. At room temperature it is 10-8 s for 8 nm and

ims for 16 nm magnetite nanoparticles [5]. Figure 2 compares the relaxation curves for 6
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nm and 16 nm nanoparticle as synthesized by us. The nanoparticles were embedded in a

polymeric matrix using the technique of Electrospinning. This will be discussed in detail

in the next chapter [6]. The experiment was performed at 5K. The samples were exposed

to a pulse of 1000 Oe (- 0.1 T) magnetic field which was then switched off. The resultant

decay in magnetization was then measured as a function of time. The experiment was

performed at a low temperature (5K) to enhance the relaxation time of the particles

thereby making it easy to measure. The measurements (Figure 6-3) clearly indicate that

the relaxation of the 16 nm nanoparticles is slower than the 6 nm particles and is a

definite proof of size dependence of the Neel relaxation.
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Figure 6-3. Magnetic relaxation curves for 6 nm and 16 nm nanoparticles at 5K. The
relaxation of the 16 nm magnetite particles is significantly slower than the 6 nm particles.

Field cooling experiments were conducted to further confirm the size dependence

behavior of the magnetic nanoparticles (Figure 6-4). First the sample of magnetic

nanoparticle in the polymeric matrix was cooled to 5K. Then a small uniform external

field was applied and the net magnetization was measured while heating the sample to

300 K at a constant rate. The samples were then cooled back to 5K at a constant rate and

the magnetization was measured. Figure 6-4 depicts the cooling curves for 6 and 16 nm
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nanoparticles. Before the heating cycle, when the particles are cooled to 5K the magnetic

moment of the nanoparticles are randomly oriented and remain locked in the easy axes of

magnetization. As the temperature is increased, the thermal energy is available to align

with the external field direction. Eventually, the net moment reaches a maximum when

the greatest population of moments aligns with the external field. This maximum

temperature is called the blocking temperature (TB). Above blocking temperature

thermal energy is strong enough to randomize the moment. During the cooling cycle

measurement, the curve diverges from the heating cycle values near the blocking

temperature. This is because the individual moment of each nanoparticle will tend to

align with the easy axes of magnetization that is closest to the applied field and remain

locked in that direction at low temperature. The blocking temperature for 6 nm was 11 K

and 6 nm was 62 K.
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Figure 6-4. Field cooling curves for 6 nm and 16 nm magnetite nanoparticles. The
blocking temperature difference between 6 nm and 16 nm particles is vastly different.

Above the blocking temperature, the nanoparticle exhibit superparamagnetism i.e.

they have a zero magnetization at zero applied field. This was confirmed by performing

the magnetization studies. Figure 6-5 shows the magnetization curve for 6 nm and 16 nm
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particles. There was no remanence when the applied field was reduced to zero. At high

fields, the dipoles are completely aligned with the external field and they achieve

saturation. The smaller value of the saturation magnetization value for the 6 nm

nanoparticles can be attributed to the surface spin canting of the small nanoparticles [7].
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Figure 6-5. The magnetization curves of 6 nm and 16 nm particle at room temperature.
Both nanoparticles are superparamagnetic at room temperature and have zero remanence
when the applied field is zero.

6.3.2 Phase Transfer

The technique to transfer the monodisperse nanoparticles from organic to aqueous

phase was similar to the method developed by Pellegrino et al. [4]. The hydrophobic part

of the polymer interacted with the hydrophobic part of the oleic acid forming a bilayer [8]

(Figure 6-6). The maleic anhydride part of the polymer hydrolyzed to carboxylic acid

group in the presence of water. This provided both steric and electrostatic stabilization to

the nanoparticles in aqueous solution. However the efforts to adsorb the nanoparticles

on the positively charged PS beads to create core-shell structures were not successful.

Destabilization of the magnetic nanoparticles was observed in the presence of the PS

beads. This could be due to the stripping off the negatively charged bilayer when the
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nanoparticle approached the positively charged bead, thereby making the nanoparticles

unstable.

Organic Phase

, k I Phase
Transfer

rpr"

Oleic acid/Oleyl amine coated
magnetic nanoparticles

Aqueous Phase

0L L

ONr

Xa~Lb

Oleic acid/Oleyl amine coated
magnetic nanoparticles
stabilized with a bilayer of
Poly(maleic anhydride alt-1-
tetradecene)

Figure 6-6. Schematic of the phase transfer of the nanoparticles from organic to aqueous
phase using a bilayer type approach.

Recently our lab has developed a ligand exchange method to exchange the

surfactants (Oleic acid/Oleyl amine) present on the surface of the nanoparticles with a

hydrophilic polymer [9]. These nanoparticles were successfully adsorbed on a charged

template (positively charged silica beads) without any problem of aggregation that was

observed with bilayer type stabilized magnetite nanoparticles (Figure 6-6). Using this

technique it should be possible to create core-shell structures of monodisperse magnetic

nanoparticles and can be explored further in future.

6.3.3 Energy Absorption

The energy absorption capability of the slow relaxing nanoparticles was

confirmed with a drop ball test. Figure 6-1 illustrates the underlying theory proposed by

us. Figure 6-1a can also be visualized as a matrix impregnated with 6 nm nanoparticles

and lb as a polymeric matrix with 16 nm particles. In both the cases, the matrix is

exposed to a strong enough magnetic field with the magnetic dipole aligned in the

171

04 k''_rrr

~""~J-o
~Jvvy
c~\O

r/""'
~Nvv
L~

e ý ýe



direction of the field. When the fiber is deflected, the 6 nm particles will always be

aligned with the external magnetic field because they relax instantaneously. However for

the 16 nm particles when the time scale of impact is smaller than the relaxation time of

the nanoparticle, the dipoles are misaligned against the field which has an energy penalty

associated with it. This should increase the energy absorption capacity of the matrix. The

interaction energy between a dipole with magnetic moment min and external magnetic

field is given by

Eh = -(mi..Ho) (2)

in = u,,MV (3)

where Ho is the external magnetic field, /.o is the permeability of free space, M

is the magnetization of the material and V is the volume of magnetic nanoparticle.

Given the loading density of the nanoparticles and the deflection of the matrix, the

energy absorbed by the nanoparticles can be calculated using Equation (2) and (3). The

amount of energy adsorbed is a function of the size (V) and the magnetization of the

nanoparticles (M ). Magnetization value of the 16 nm magnetite nanoparticles was not

sufficient to observe any measurable amount of energy absorbed. 25 nm iron

nanoparticles were used instead. The magnetization and the volume of the 25 nm iron

nanoparticles are 2 times and 4 times respectively, to that of 16 nm magnetite

nanoparticles and this should yield measurable amount of energy absorption. Also the

iron nanoparticles have infinite Neel relaxation time and the time scale of impact should

not be critical (Figure 6-7).
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Figure 6-7. Field cooling experiment curve for 25 nm iron nanoparticles. The blocking
temperature is 350 K. At room temperature, these nanoparticles will behave like
magnetic dipoles permanently magnetized in the direction of the applied field.

The PU foam embedded with nanoparticles undergoes a large deflection under a

small load. The amount of energy absorbed by the nanoparticle is proportional to the

deflection. Hence the increment in the foam stiffness (due to energy absorption of the

nanoparticles) in the presence of the field should be measurable. Figure 6-8 shows the

trajectory of the ball as followed by the high speed camera. The indentation in the

absence of the field is 20 % higher compared to that in the presence of the field.
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Figure 6-8. (a) Schematic of the drop ball impact test setup. (b) Impact test images at
different times as captured with a high speed camera (c) trajectory of ball during the
impact test.

The low indentation indicates the increase in the foam stiffness under the

magnetic field. The extra energy required to bend the dipoles against the field leads to the

stiffening of the foam.
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6.3.4 Impact Test Modeling

We used Hertz contact theory to model the deflection of the foam and prove that

the increase in the modulus of the foam in the presence of the field is indeed due to the

magnetic effect of the nanoparticles. The magnitude of the energy taken up by the

nanoparticles can be calculated if the strain field within the foam is known. The strain

field can be converted into the deflection of the associated nanoparticles. Once the

deflection is known the amount of energy required to bend the calculated from equation

(2). We assumed the foam acts like an elastic flat plate and neglected the viscoplastic

effects associated with the foam. We adapted the case of indentation of a semi infinite

plane by a spherical indenter (Figure 9) [10, 11].

z

Figure 6-9. Schematic of indentation of a semi-infinite flat plane by a spherical indenter.

The normal and radial stress profile on the surface and in the interior of the

sample was estimated. At the surface z = 0, normal (oz) and radial stresses (or) are given

by
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Within the specimen interior the stresses are given by

1- 2v a2 3 z a2U
o, 3 3 r2 12 2 2 2

1/2 2 11/2
u a2+u a

Pm

zP
pM

SPr
Pm

3
2

1- 2v a2

3 r2

1/2 2v+

2u3 z

u 1/21
u( 1-v 1/2

v) tan'
a

a2u
u2 + a22

u2 +a 2zI

3 a2u1/2 rZ2

2 a ju2 +a2Z2

where:

u = I[(r2 +22L -a2) [(r2 2  2  4a2z2/2+ + -+· ·, ··]'•1
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In the above equations v is the poison's ratio of the foam, To is the angular stress, z, is

the shear stress, Pm is the mean pressure below the sphere and a is the radius of contact.

p, can be written as

Pm = m2 (10)

where P is the load imparted by the projectile on the surface. According to the Hertz

contact theory [12], circle of contact is related to the elastic properties of the specimen

and load P by

3 4kPR

3S
(11)

where k is the elastic mismatch factor and for a rigid indenter and it is given by

k = 9(1 -v 2) (12)

P can be calculated by equating the potential energy of the ball to the strain energy stored

in the specimen [10].

Smvo2  5/2R1/2 3S
2 5 4k

(13)

R is the radius of the sphere and 8 is the maximum deflection of the top surface.

Sand a are related by

(14)

We can calculate P from equation (10), (11), (13) and (14) as

(15)5 9 S2 11

4 16 k2
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In the drop ball test we observed 20% less deflection in the presence of the field. We can

translate this into an equivalent amount of elastic energy using equation 13. We assumed

that the energy absorbed by the foam and the particle is additive i.e.

Eimpact = Efoam + AEparticle where Eimpact is the impact energy from the ball, Efoam is the

energy absorbed by the foam and AEparticle is the energy taken up by the magnetic

particles. For S = 9e4, v= 0.4 (Vendor data), off (deflection when the magnetic field was

off) = 0.01 m, &on = 0.008 m (deflection when the magnetic field was off), AEpartice was

found to be 0.024 J. From stress equations we can calculate the strain i6, using Hook's

law.

1

S
Co=1 -[U -V(a, +az)] (16)

S

1
Ez = [6 z - V(a + r)]

S

The strains were then used to calculate the displacement for given (r, z) using the

following equations

au u 1 8u &u u , u
E,= -- ' Co =; -_ + O; - =  ;r  r rz,=-z +az (17)

ui is the displacement in the ith coordinate. o = 0 since our system is axis-symmetric.
80

It is possible to solve analytically for the displacement at the surface. The

displacement in the interior of the foam was calculated by numerically solving equation 6

and 8. Figure 6-10 shows displacement profile calculated in r and z direction. The

boundary conditions that ur, u = 0 as r and z -> oo is satisfied.
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Figure 6-10. Surface plots of the model prediction of the displacement profile (a) u,(r,z)
and (b) ur(r,z) of the foam.
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The negative radial displacement indicates the corresponding points are pulled

inward towards the center of contact. The calculated displacements were converted into

the angular deflection at a given point (Figure 6-11).

r=-O

] Pr[ 

[r+dr;z]L" •**JBefore Impact

z
[r+ur(r,

An! ;z/ I [r+dr+ur(r+dr,z);z]]
6Ar,z)

After Impact Associated Nanoparticles

Figure 6-11. A schematic of the surface profile before and after the impact. The angular
deflection can be calculated if the displacement in r (ur) and z (u,) direction is known.

The angular displacement of two points in the foam, originally at positions

[r,z] and [r + dr, z] to their final positions

[r + ur(r, z); z + uz (r, z)] and [r + dr + ur(r + dr, z); z + uz (r + dr, z)], as shown Figure 9.

Then, it follows that

r + dr + ur(r + dr,z)- [r + ur(r,z)]

[r + dr + u(r + dr, z) - [r + Ur(r,z)] + [u(r + dr,z) - u(r, z)]2
1 + dur / dr

[1 + dur / drf +[du, / dr]2

(18)

The net energy required to deflect an aligned dipole by an angle 0 in a magnetic field is

given by

Eh = mH, (1 - cos9) (19)
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Integrating Eh over the whole volume of the foam gave the net energy absorbed due to the

deflection of the dipoles.

2;r aoo

Eh = f nomH[1- cos (r,z)]rdrdzdy
00

=2rnomH f[1- cosO(r, z)]rdrdz (20)
00

27nomHJJ ++ 1+ du, / dr rdrdz
o o0 [1+du,/drj2 + [duz /drl2

where O(r,z) is the angle a particle originally at position [r, z] makes with the magnetic

field when it has been displaced to its new position [r + u,(r,z);z + uz(r,z)]and no is the

number of particles per unit volume. The local change in the volume fraction of the

nanoparticles is implicitly accounted for in the relative displacements of the different

points within the foam.

The net energy required to deflect an aligned dipole by an angle 0 in a magnetic

field is given by

Eh = mHo (1 - cos ) (21)

Summing Eh over the whole volume of the foam gave the net energy absorbed due

to the deflection of the dipoles. For the given loading (30 wt%) of the high

magnetization iron nanoparticles in the matrix, the interparticle interactions are also

important. A (Chapter 1, Equation 3) was calculated to be - 5. Hence the change in

interparticle interaction due to the deflection of the matrix was also considered and is

given by

3m 2
Ed 3 (1 - cos 2 0) (22)

4where t here is the interparticle distance in the matrix.

where t here is the interparticle distance in the matrix.
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The summation of Eh and Ed over the whole volume of the foam was found to be

- 0.019J, which was very close to what we observed experimentally (0.024 J). Table 1

shows the distribution of the energy absorbed by different mechanisms in the foam. The

presence of magnetic field results in 33 % absorption of the energy by the nanoparticles.

Out of this, 91% can be attributed to the Ne6l relaxation behavior. The change in inter

particle interactions contributes to only 9% of the total energy taken up by the field

activated nanoparticles.

Table 1: The distribution of energy absorption by different components of the foam

Foam

Eh

Ed

% Energy
Adsorbed

67%

30%
3%

The increase in elastic modulus of PU foam due to the coupling interaction

between the magnetic field and the dipole moment of nanoparticles can be calculated

using equation 14.

S =(o )2. = 1.75 
(23)

off 6n

where Son and Soff are the modulus of foam in the presence and absence of the field. In

this case, the modulus of polyurethane foam increased by 75% in the presence of the

magnetic field. We can thus conclude that the Neel relaxation can be used enhance the

energy absorption capacity of the matrix in which they are embedded.

The close agreement between the model prediction and the experimental value

validated our model. The fraction of energy absorbed by the particles, Ep as a function of

no mH/S is shown in Figure 6-12, where no is the number of nanoparticles per unit volume

of the foam. nomH/S is the ratio of the magnetic energy associated with the unit volume

of the foam to that of the elastic energy per unit volume of the foam. The variation of

6on,/ off with nomH/S is also shown on the same plot. The fraction of the energy absorbed
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by the magnetic nanoparticles scales inversely with the foam modulus. Softer foams

(with lower S) deflect more than the harder foams (with higher S) for the given impact

energy. The energy absorbed by the nanoparticles scales with the deflection volume.

Hence the increment in foam stiffness will be higher for the softer foam.
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Figure 6-12. Graph of the energy absorbed by the magnetic nanoparticle as a function of
impact energy for the foam with different modulus. The energy absorbed by the
nanoparticle is highest at the lowest value of the foam modulus.

The ratio of 1,,/ Sof, where &,, and 5off is the deflection of the foam in the

presence and in the absence of the field, was found to be constant for a given S. The

energy absorbed by the nanoparticle is the difference between the energy absorbed by the

foam when the field is on and when the field is off. Energy absorbed by the foam scales

with P5/2 (Equation 14). Therefore the energy absorbed by the nanoparticle should also

scale with 6,,"12 (Figure 6-13). In other words, d5/2 captures the deflection profile in the

foam which governs the energy absorbed by the nanoparticles.
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Figure 6-13. The energy absorbed by the magnetic nanoparticles for different modulus of
the foam scales with 6on5/2 as observed by the linear nature of the plot.

The deflection profile in the foam can also be changed by changing the shape of

the indenter. The cone shape indenter imitates the sharp edge projectiles which are

common in energy absorbing scenarios. The deflection profile imparted by the conical

indenter is governed by the angle of the cone (Figure 6-14, Refer Appendix). Figure 12

compares the amount of energy absorbed by the foam for different conical indenters

which have the same impact energy but different cone angles. The amount of energy

absorbed the magnetic nanoparticle depends on the deflection profile and the volume of

the foam affected by the indenter. At smaller cone angles, the deflection of the foam is

higher but the volume of the foam deflected by the indenter is lower. Similarly at the

higher cone angles the deflection of the foam is lower but the number of nanoparticles in

the foam which are deflected against the magnetic field are higher (Figure 6-15). The

energy absorbed by the foam is the maximum when the cone angle is 600. The value of

the energy absorbed by the nanoparticle when impacted with a 600 conical indenter is

however lower than the equivalent spherical indenter by - 10%. The volume displace by
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the spherical indenter is more than the conical indenter which leads to the lower energy

associated with the deflection of the nanoparticle. The deflection profile of the foam at

different cone angles and that of an equivalent sphere is shown in Figure 6-16.

6

Figure 6-14. Schematic of indentation of the foam with a conical indentor.

0753
CU<C',

S-
(1)~

W c
U. .

0.018

0.016

0.014

0.012

0.01
20 40 60 80

Cone Angle, a (Degrees)
100

Figure 6-15. Graph of energy absorbed the
angle.

magnetic nanoparticle as a function of cone

185



0.004

0.008

0.012
0 0.01 0.02

r(m)

u

0.004

0.008

0.012

0.01 0.02

r(m)

0

0.004

0.008

0.012

0.01 0.02

r(m)

186

0.03

0.03

0.03



0.004
E
N

0.008

0.012
0.01

r(m)
0.02

0.01 0.02r(m)

0.01 0.02r(m)

Figure 13. Comparison of the foam deflection
(f) with an equivalent spherical indenter.

(uz) at different cone angles (a-e) and

187

(d)

cc =60o

0.004

0.008

0.012

0.03

0.03

0.03

0

0.004

N

0.008

0.012



6.4 Conclusions

Different size magnetite nanoparticles were produced using seed mediated

growth. The size dependent magnetic properties of the nanoparticles were characterized

in detail. SQUID studies confirmed the size based relaxation of these nanoaparticles.

Field cooling experiments also indicated the size based dependence of the magnetization

of the magnetic nanoparticle. Bilayer stabilization was utilized to transfer the

nanoparticles from organic to aqueous phase but the nanoparticles could not be used in

the LbL process due to the instability rendered to the nanoparticles. Ligand exchange

method can be adopted to create more stable aqueous based nanoparticles. The drop ball

test on foam impregnated with infinite Neel relaxation particles and the subsequent

modeling suggested that indeed Neel relaxation behavior in nanoparticles can be

exploited for energy absorption scenarios. This phenomenon can be used to create

intelligent materials which would stiffen up only "on demand" (when the magnetic field

is applied). The increase in stiffness scaled with the magnetization of the nanoparticles.

Hence incorporating higher magnetizable nanoparticles can enhance the strength of the

field responsive intelligent materials. The effect of a cone shape indenter on the amount

of energy absorbed by the nanoparticle was also investigated. The strain profile

generated by a 600 conical indenter resulted in the maximum energy absorption by the

nanoparticles. This value was however lower that the energy absorbed by the

nanoparticle when the foam was deflected with an equivalent spherical indenter. The

spherical shape indenter deflects higher volume of the foam compared to the conical

indenter leading to higher energy absorbed the nanoparticle.

Appendix

For the conical indenter the stress distribution on the surface, z = 0 is given by

a- -1 a= - cos - ; r<a
P, r

az = 0; r 2 a
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Chapter 7

Field-responsive Superparamagnetic Composite
Nanofibers by Electrospinning

7.1 Introduction

Energy absorbing materials which can dissipate impact energy have numerous

applications in ballistics, sporting goods, protective equipment and vehicles [1]. The

energy can be absorbed via elasticity, friction, viscoplasticity or plasticity mechanisms

[2]. The recent trend is to make these structures more adaptive, where they can absorb

energy in a large operating dynamic range, i.e. resilient under relatively low impact

conditions and more rigid under high impact conditions [3-5]. In Chapter 6 we illustrated

that incorporating high Neel relaxation nanoparticles in a matrix can enhance its strength.

In this Chapter we will describe in detail a practical and scalable method to incorporate

nanoparticles in polymeric fibers. Magnetic composite fibers, in which magnetic

nanoparticles are embedded into a polymeric fiber matrix, are expected to exhibit

interesting magnetic field-dependent mechanical behavior with potential applications in a

range of areas. Such materials could, for instance, be used as 'intelligent' fibers and

fabrics for protective clothing for military and first-response personnel, and in health

care. Other potential applications include magnetic filters [6], sensors [7] and future

generations of electronic, magnetic and/or photonic devices used for information storage,

magnetic imaging, static and low frequency magnetic shielding and magnetic induction

[8, 9]. Below approximately 100 nm in diameter, particles of ferromagnetic materials

such as iron oxide no longer exhibit the cooperative phenomenon of ferromagnetism

found in the bulk, due to thermal fluctuations sufficient to reorient the magnetization

direction of entire particles. Instead, such nanoparticles are superparamagnetic,

exhibiting strong paramagnetic properties with large susceptibility. In a uniform external

magnetic field, such superparamagnetic nanoparticles within the fibers would be

expected to align with their magnetic moments in the direction of the magnetic field such

that when the fiber is deformed, extra energy is needed to disrupt this alignment of the
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nanoparticles within the fiber if the time scale of the deformation is smaller than the

relaxation time, resulting in its increased stiffness. In a nonuniform magnetic field, the

magnetic nanofibers should also deform or bend in the direction of the gradient of the

magnetic field. These changes in stiffness and shape should be completely reversible,

since the particle magnetic moment and fiber orientations should relax to their original

distributions on removal of stress and magnetic field. The relative magnitudes of the

stiffness enhancement and fiber deformation are expected to increase as the diameter of

the embedding polymer fiber is reduced, and, therefore, the question as to whether

magnetic composite nanofibers (i.e. with diameters on the order of 100 nm or less) can be

produced effectively is of considerable interest. We report here on the production and

characterization of such superparamagnetic composite polymer/magnetite nanofibers,

which we obtain using an electrospinning technique. Li et al. previously reported the

production of magnetic ceramic nanofibers of nickel ferrite manufactured by calcination

of electrospun PVP/metal alkoxide precursors; magnetic hysteresis was observed, but no

mechanical properties were reported [10].

Electrospinning is an effective method for the production of polymeric nanofibers

with diameters ranging from a few to several hundred nanometers. This technique has

attracted interest over the last decade due to potential applications for nanofibers in such

areas as reinforcing components in nanocomposites [11, 12], molecular electronics [13-

15], membrane-based separation [16, 17], tissue engineering [18, 19], sensing and

protective clothing [20]. In a typical electrospinning process, a polymer solution or melt

is extruded through a capillary and forms a small droplet at the tip of the capillary. In the

presence of an electric field, this droplet deforms into a conical shape. When the

electrical field is strong enough, the charge density built up at the surface of the droplet

overcomes surface tension, resulting in ejection of a charged jet from the apex of the

cone. The jet is accelerated toward a grounded collecting device, traveling first as a

steady jet for a certain distance, and then undergoing an electrostatically driven whipping

instability [21-24] that bends and stretches the jet. The result of the whipping instability

is a dramatic reduction in the diameter of the jet, typically by about 2 orders of

magnitude, which allows for rapid solidification of the jet through solvent evaporation

(for solution) or cooling (for melts). The solid fibers are deposited on an electrically
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grounded collecting device in the form of threads [25] or as a nonwoven fabric. The

feasibility of incorporation of nanoparticles into nanofibers has made this process very

attractive for the production of composite nanofibers, simply by electrospinning the

nanoparticle-filled polymer solution [26-29], although a major consideration in the

processing of such composite nanofibers is the dispersion stability of the nanoparticles in

the polymer solution.

In this Chapter, as proof of concept, we describe the formation of

superparamagnetic nanofibers containing stably-dispersed superparamagnetic

nanoparticles via electrospinning. The superparamagnetic nanoparticles are synthesized

by an aqueous co-precipitation technique in the presence of a polymer that attaches to the

particle surfaces and confers steric stabilization to the nanoparticle dispersion in the

polymer solution. We incorporated these particles in the polymer solutions used in the

electrospinning process to form polymeric nanofibers that we characterize in terms of

both their magnetic and mechanical properties. However, the magnetite nanopaticles used

had a polydisperse size distribution with an average size of 8 nm [30]. Neel relaxation of

these particles is 10-8 s [31] and no increment in the strength of the fiber will be observed

in the presence of an external magnetic field. We were unable to electrospin 25 nm iron

nanoparticles (Chapter 6) due to dispersion problems. We were however able to

synthesize high N6el relaxation magnetite nanoparticles which were electrospinnable.

The magnetite nanoparticles were produced using organic route synthesis as explained in

Chapter 6. A theoretical model for the estimation of the increment in stiffness of a

nanofiber impregnated with high Neel relaxation magnetic nanoparticle is also discussed

in this chapter.

7.2 Experiments

7.2.1 Materials

Poly(ethylene oxide) (PEO, My 2,000,000), poly(vinyl alcohol) (PVA, 87-89%

hydrolyzed, Mw: 85-146k)and dodecyl sulfate, sodium salt (98%) (SDS) were obtained

from Aldrich and used for making electrospinnable solutions. Poly(acrylic acid) (PAA;

50 wt% in water, Mw=5000), iron(III) chloride hexahydrate (97%), iron(II) chloride
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tetrahydrate (99%), ammonium hydroxide (28 wt% in water), dimethyl formamide

(DMF), iron (III) acetylacetonate (97%), benzyl ether (99%), 1-2 hexadecanediol (97%),

ethanol, oleic acid (90%), oleylamine (70%), poly(methyl methyacrylate) (PMMA, Mw =

495,000), polyurethane (PU, Mw= 145,000), tetrahydrofuran (THF), dimethyl formamide

(DMF) , hexane and dicyclohexylcarbodiimide (CDI) were obtained from Aldrich

(Milwaukee, WI) and used for synthesizing nanoparticles. Jeffamine XTJ-234

(PEO/PPO-NH 2, EO:PO=6.1:1, Mw=3000) is an amine-terminated random copolymer of

ethylene oxide (EO) and propylene oxide (PO) repeat units with 6.1 EO units per PO

unit. It was donated by Huntsman Corp. (Houston, TX) and has characteristics similar to

that of pure PEO. All chemicals were used as received.

7.2.2 Preparation of aqueous magnetite nanoparticles

The graft copolymer was prepared by reacting the Jeffamine with the carboxyls

on PAA via amidation chemistry as described elsewhere [32]. Only a small percentage

(16%) of carboxyl groups were grafted with Jeffamine since free carboxyl groups are

required for chelation with surface iron atoms and stabilization of the magnetite

nanoparticles. In a typical procedure for the synthesis of the magnetite nanoparticles

[32], an aqueous solution containing 2.35 g of iron(III) chloride hexahydrate, 0.86 g of

iron(II) chloride tetrahydrate, and 1 g of graft copolymer was prepared by dissolving the

reagents in 40 mL of deoxygenated water. Deoxygenation was achieved by bubbling

with nitrogen under vigorous stirring for 30 min before reaction. The aqueous solution

was heated to 80 oC, and 5 ml of 28 wt% of ammonium hydroxide was added to

precipitate iron oxide in the form of magnetite. The growth of spherical nanoparticles

was arrested by the polymer in the solution, which caps the magnetite nanoparticles as

soon as they form and stabilizes them sterically against aggregation. The resulting

mixture was then aged for 30 min at 80 oC. This procedure produces 1 g of magnetite in

40 mL of water, which is equivalent to a 2.5 wt% suspension of magnetite. The final

magnetic fluid was washed in a centrifuge with an ultrafilter (Millipore, Centricon Plus

80, MWCO 100,000) to remove excess polymer and salts.
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7.2.3 Preparation of monodisperse magnetic Nanoparticles

To synthesize 16 nm magnetite nanoparticles scheme of Sun et al. [33] was

adopted as discussed in Chapter 6 (Section 6.2.2). In brief an organometallic precursor is

decomposed in the presence of mixture of surfactants at high temperature resulting in

monodisperse magnetite nanoparticles. 2 mmol of Iron (III) acetylacetonate, 10 mmol of

1,2 hexadecanediol, 6mmol of oleic acid , 6 mmol of oleylamine and 20 ml of benzyl

ether were refluxed at 300 oC for 1 hr. The resulting black mixture was cooled down to

room temperature, purified and resuspended in hexane and was used for seed mediated

growth.

For synthesis of bigger nanoparticles, 2 mmol of Iron(III) acetylacetonate, 10

mmol of 1,2 hexadecanediol, 2mmol of oleic acid , 2 mmol of oleylamine , 20 ml of

benzyl ether and 80 mg of seeds in 4 ml of hexane were mixed in a 3 neck flask and

stirred continuously under a blanket of nitrogen. The mixture was kept at 100 OC for 30

mins and at 200 oC for 1h. Finally the mixture was refluxed at 300 oC for 30 mins. The

magnetite was recovered using the procedure outlined above. The resulting magnetite

nanoparticles can then be used as seeds for subsequent synthesis. In this manner stable

nanoparticles up to 16 nm were synthesized in 3 cycles.

7.2.4 Preparation of spinning solutions

PEO solutions ranging from 1 to 3% by weight were prepared by directly adding

the PEO polymer to deionized water. The solutions were stirred vigorously for at least 24

h at room temperature in order to obtain homogeneous solutions. PVA solutions ranging

from 6.5 to 15% by weight were prepared by directly adding the polymer into distilled

water, with vigorous stirring for at least 3-4 h at 70 OC.

Various concentrations of PEO/aqueous magnetite nanoparticle dispersions were

prepared by adding the desired amount of PEO solution directly to the nanoparticle

aqueous solution prepared as described above, with vigorous stirring for at least 24 h at

room temperature. A range of PVA/magnetite nanoparticle suspensions was prepared

similarly, and each was mixed using a vortex mixer (VWR Scientific Products) for at
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least 10 min before spinning, as the particle suspension was not particularly stable against

aggregation and settling.

Monodisperse nanoparticles synthesized using organic route were electrospun in

PMMA and PU nanofibers. A 7.5 wt % PMMA solution containing 2.78wt % Fe30 4 in a

mixture of THF and DMF (3:1) was prepared for electrospinning; A 10 wt%

polyurethane solution containing 2.78% of Fe30 4 in a mixture of THF and DMF (3:1)

was prepared for electrospinning.

7.2.5 Electrospinning experiments

The parallel-plate electrospinning apparatus used was similar to that described by

Shin et al. [23] and Fridrikh et al. [34]. Briefly, two aluminum disks with diameters of

10 cm were arranged parallel at a distance of up to 30 cm apart. The fluid was pumped at

a constant flow rate by a syringe pump (Harvard Apparatus PHD 2000) to a stainless

steel capillary with inner diameter 1 mm located in the center of the upper disk. An

electrical potential was applied to the upper disk by a high voltage power supply (Gamma

High Voltage Research ES-30P). Current was measured by a Digital multimeter

(Fluke85 III) as the voltage drop across a 1.0 MO resistor between the lower disk and

ground. The electrical voltage, solution flow rate and distance between the two parallel

plates were adjusted to obtain a stable jet.

7.3 Measurement and characterization

Viscosity was measured on an AR2000 Rheometer (TA Instruments) at 25 'C. A

Kruss 10 tensiometer was used to determine surface tension, while conductivity was

measured using a Cole Parmer 19820 conductivity meter.

7.3.1 Dynamic light scattering

Dynamic light scattering (DLS) was performed to determine the hydrodynamic

diameters of the coated nanoparticles using a Brookhaven BI 200-SM system at a fixed

angle of 900. The autocorrelation function was fitted with an exponential curve to obtain
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the diffusion coefficient, which was then used to calculate the hydrodynamic diameter via

the Stokes-Einstein equation.

7.3.2 Scanning electron microscopy

Specimens for scanning electron microscopy (SEM) were prepared by direct

deposition of the electrospun nanofibers on an aluminum foil and sputter-coating with

gold using a Desk II cold sputter/etch unit (Denton Vacuum LLC, NJ). The images of the

electrospun fiber were obtained using a JEOL-6060SEM (JEOL Ltd, Japan), and the fiber

diameters were determined using AnalySIS image processing software (Soft Imaging

System Corp., Lakewood, USA) by measuring 20 randomly selected fibers for each

sample.

7.3.3 Transmission electron microscopy

For transmission electron microscopy (TEM), a dilute magnetite nanoparticle

solution was dried on a carbon grid and visualized under the JEOL JEM200 CX TEM

microscope (JEOL Ltd, Japan) to estimate the core sizes of the particles. The electrospun

nanofibers were directly deposited onto a copper grid for TEM analysis.

7.3.4 Superconducting quantum interference device

The superconducting quantum interference device (SQUID) test was conducted

using an MPMS XL magnetometer (Quantum Design Inc., San Diego) to measure the

relaxation behavior and the magnetization curve for the magnetic Nanofibers.

7.3.5 Nanoindentation

Nanoindentation experiments were performed using a Nanoscope IV,

DimensionTM 3100 AFM (Digital Instrument, Santa Barbara) with a RTESP single-beam

silicon probe (Digital Instrument) (fR=280-361 kHz, k=30-40 N/m). All the nanofibers

were conditioned in a vacuum oven for at least 2 days before experiments, at room

temperature for PEO and PEO/magnetite nanofibers and at 60 oC for PVA and

PVA/magnetite nanofibers, respectively. During these AFM indentation tests, PVA and

PVA/magnetite nanofibers were treated as a group, as were the PEO and PEO/magnetite
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nanofibers. Within each group, the maximum indentation force, Pmax, was the same.

Pmax for the PVA group was twice that for the PEO group. Within each group, mica and

a flat reference sample of epoxy were indented using the same probe and parameters.

The mica has an elastic modulus of -171 GPa and Poisson ratio of 0.3 [35-37]. The

elastic modulus of the reference epoxy sample was determined independently using a

Triboindenter with a Berkovich-type indentation tip (Hysitron Inc., Minneapolis). For

each sample, at least 20 individual force curves were obtained.

7.3.6 Field responsiveness testing

A rectangular strip (lengthxwidthxthickness=1.8x0.555x0.004 cm) of electrospun

nonwoven mat was placed on the surface of a table, with one end fixed by tape onto the

table surface. A permanent laboratory magnet with a rectangular cross-section (1.8x0.6

cm) was suspended some distance away above the mat, and the response behavior of the

nonwoven mat to the laboratory magnet was recorded by a digital camera.

7.4 Results and discussions

7.4.1 Characterization of magnetite nanoparticles

7.4.1.1 Aqueous Magnetite Nanoparticles

The size distribution of the aqueous route synthesized magnetite nanoparticles, as

determined by DLS and shown in Figure 7-1, corresponds to a number average

hydrodynamic diameter for the nanoparticles of 25 nm. An analysis of TEM images of

the as-synthesized magnetite nanoparticles (Figure 7-2) indicates an average core

diameter, assuming a log normal distribution, of 7.5±2.9 nm. Only the magnetite cores

are visible in such TEM measurements because the very low contrast polymer coatings

cannot be discerned in these images. The difference between the average hydrodynamic

diameter and core size yields a thickness of about 9 nm for the polymer shell.
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Figure 7-1. DLS curve for the 2.5 wt% magnetite nanoparticle solution.

Figure 7-2. TEM image of the aqueous magnetic fluid.

The dependence of the magnetization, M, of the magnetite fluid on the applied

magnetic field in the SQUID tests is shown in Figure 3. The magnetite nanoparticle

suspension exhibits superparamagnetic behavior in that there is zero remnant

magnetization at zero applied field. The saturation magnetization is approximately 0.5-

0.7 T.
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Figure 7-3. Magnetization (M) versus magnetic field (H) for the 2.5 wt% as-synthesized
magnetite fluid at 25 TC.

7.4.1.2 Organic Magnetite Nanoparticles

The monodisperse nanoparticles are characterized in detail in Chapter 6.

Monodisperse magnetite nanoparticles upto 16 nm in diameter were synthesized using

this technique.

7.4.2 Electrospinning

7.4.2.1 PEO-magnetite nanofiber

The magnetite nanoparticles were readily dispersed as stable suspensions in PEO

solutions, increasing their conductivity dramatically, as shown in Table 1. The preferred

electrospinning parameters, also given in Table 7-1, are almost the same for PEO and

PEO/magnetite solutions. Some representative SEM pictures of electrospun nanofibers

of PEO and PEO/magnetite are shown in Figure 7-4. At low PEO concentration (1 wt%)

in the absence of magnetite nanoparticles, the fibers adopted the bead-on-string

morphology [38] ( Figure 7-4(a)) while fibers with uniform diameters were obtained

when 3.52 wt% magnetite nanoparticles were added to the spin solution (Figure 7-4(b)).
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At higher concentrations (2-3 wt%) of PEO, uniform fiber morphologies were obtained

for both PEO and PEO/magnetite solutions with little change in fiber diameters on the

addition of magnetite nanoparticles, as shown in Figure 7-4(c) and (d).

Table 7-1. Solution properties and electrospinning
representative nanofibers.

processing parameters of some

Fiber
Conductivity Viscosity Voltage Flow Rate Distance Current Diameter

(AS) (Pa-S) (KV) (ml/min) (cm) (nA) (nm)

PEO 107.9 1.565 0.01 9.0 25 83 390+40

(2wt%) Fe 30 4 (0.75%) 1277 1.506 0.02 9.0 25 353 400+80

351 0.2905 0.01 29 25 412 170±40

PVA Fe304 (0.75%) 1372 0.3926 0.01 29 25 1534 320±40
(7.5%)

Fe304(0.75%)+SDS(1%) 2740 1.941 0.016 28.5 25 1050 140+30

Figure 7-4. Some representative SEM images of PEO and PEO/magnetite
nanofibers: (a) PEO (1%), (b) PEO (1%) +Fe3O4 (3.52%), (c) PEO (2%), (d) PEO
(2%)+Fe30 4 (0.75%).
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7.4.2.2 PVA-magnetite nanofiber

The magnetite nanoparticles were easily dispersed in PVA solutions, but these

solutions were not as stable as in the PEO case, and the magnetite nanoparticles settled

overnight. The reason for this settling of the suspension on standing is that the PEO-

based shells around the nanoparticles are not as compatible with the PVA in solution as

they are with PEO solutions. The PVA suspensions were easily homogenized, however,

using a Vortex mixer for 10 min immediately before electrospinning. The presence of the

magnetite nanoparticles in the PVA solutions increased the conductivity of these

solutions (Table 7-1). Again, there was little change in the preferred electrospinning

processing parameters for PVA solutions when magnetite nanoparticles were added (

Table 7-1). SEM pictures of electrospun nanofibers using PVA and PVA/magnetite

solutions ( Figure 7-5) show that the magnetite nanoparticles lead to increased fiber

diameters, but that addition of SDS to the solution counteracted this effect, as SDS

generally reduces the fiber diameters (Table 7-1). The results of a detailed study of the

effect of SDS on the PVA fiber morphology are shown in Table 7-2. The SDS increased

both the conductivity and the viscosity of the solutions significantly, but had surprisingly

little effect on the surface tension. The diameters of the nanofibers were decreased by

adding 1 wt% SDS to various concentrations of PVA. At the lowest PVA concentration

(6.5 wt%), the fiber morphology changed from bead-on-string (with no SDS) to uniform

fibers on the addition of 1 wt% SDS.
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Figure 7-5. Some representative SEM images of PVA and PVA/magnetite nanofibers:
(a) PVA (7.5%), (b) PVA (7.5%) + Fe30 4 (0.75%), (c) PVA (7.5%) +SDS (1%), (d) PVA
(7.5%) +SDS (1%) +Fe30 4 (0.75%).

Table 7-2. Effect of SDS on the PVA solution properties
morphologies.

and PVA fiber

Conductivity Viscosity Surface Tension Fiber Diameter
(AS) (Pa- S) (mN/m) (nm)

PVA SDS SDS SDS SDSNo DS SNo SDS NoSDS No SDS
(wt%) (1 wt%) (1 wt%) (1 wt%) (wtl%)

6.5% 329 1223 0.1187 0.6456 41.58 42.04 Beaded 96.04+17.13

8% 315 1187 0.2905 1.375 39.5 42.42 146.67±10.90 73.72+14.51

10% 449 1156 0.8931 2.954 39.23 39.5 201.01±27.85 158.19+22.43

12% 496 1194 2.019 6.822 37.24 34.1 356.96±15.96 193.98±48.14

15% 515 1230 8.372 20.64 34.61 29.71 478.9+18.37 297.03±14.74
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7.4.2.3 PMMA-Magnetite and PU-Magnetite Nanofibers

During the electrospinning process of the dispersion of 16 nm magnetite

nanoparticles with PMMA in THF, the jet dried too fast at the capillary tip and

continuous electrospinning was not possible. Adding 33 percent by volume of DMF to

THF (a 3:1 THF:DMF solvent mixture) prior to dispersion, the jet became stable, and

uniform fibers were obtained. A representative SEM picture of the electrospun PMMA

fiber and PU fiber containing 16nm magnetite nanoparticles is shown in Figure 8-4. The

preferred processing parameters are listed in Table 1. The inability to disperse high

magnetization 25 nm iron nanoparticle (Chapter 6) in polymeric solution made their

electrospinning impossible.

Table 7-3. Electrospinning parameters for PMMA and PU nanofibers

Voltage Flow rate Distance Current Diameter

(KV) (ml/min) (cm) (nA)

PMMA+Fe 30 4  17.5 0.05 25 72.5 1.53±0.34

PU+ Fe 30 4 17.2 0.02 35 32.5 1.45±0.76
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Figure 7-6. A representative SEM image of (a) PMMA and (b) polyurethane
fibercontaining 37 wt% of 16 nm magnetite nanoparticles.

7.4.3 Characterization of the fibers

7.4.3.1 TEM analysis

Figure 7-6 shows TEM pictures of both PEO/magnetite and PVA/magnetite

nanofibers. The weight percentages of magnetite nanoparticles within the fibers are 28%,

and 8% for PEO/magnetite and PVA/magnetite nanofibers, respectively. The relatively

large size of the PEO fiber and high content of nanoparticles within the fiber make it

difficult to focus the TEM pictures, but the contour of the alignment of the nanoparticles

into columns along the fiber axis direction is readily visible. For the PVA/magnetite

fiber, it is clearer that the magnetite nanoparticles are aligned in columns parallel to the

fiber axis direction within the fiber.

It was well known that magnetite nanoparticles can sometimes form chains in

solution because of the magnetic coupling effects between the particles. The number of

nanoparticles, no, in a chain in the fluid, at zero external field, can be estimated using the

following formula [31]

no = 1-. e2A' (1)
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Figure 7-7. TEM images of superparamagnetic Nanofibers: (a) PEO nanofiber with
28wt% magnetite nanoparticles. (b) PVA nanofiber with 8wt % magnetite nanoparticles.

where, 0 is the volume fraction of particles in the fluid, and X is the coupling coefficient,

which measures the strength of the particle-particle interactions. X is given by

2 M= (2)
14kT

where, i0 is the permeability of free space, M is intensity of magnetization of the

magnetic particles, V is the volume of the magnetic particles, k is Boltzmann's constant,

and T is the absolute temperature in degrees Kelvin.
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For magnetite particles 7.5 nm in diameter, X<1 according to Equation (2), which

means the particle-particle interaction energy is less than the thermal energy and no

chains form in solution prior to electrospinning for any concentration of magnetite

particles. We can infer, therefore, that the column alignment of magnetite nanoparticles

within the fiber observed in Figure 6(b) is a result of the electrospinning process itself.

Possible causes for this alignment may be hydrodynamics in the capillary, steady jet, or

whipping jet regions, or induction by the local electric field.

7.4.3.2 Superconducting quantum interference device

SQUID magnetization curves for both 28% PEO/magnetite and 8%

PVA/magnetite nanofibers show superparamagnetic behavior at room temperature as is

evident in Figure 7-7. At low temperature (5 K), both systems are characterized by a

narrow hysteresis and a small remnant magnetization at zero field. These can be

explained by considering the magnetic relaxation of the nanoparticles. For 7.5 nm

diameter particles, Neel relaxation dominates the Brownian rotation mechanism. The

Neel relaxation time varies exponentially with inverse temperature [31, 39]. For

example, at 300 K the Neel relaxation time for magnetite particles 8 nm in diameter in

kerosene carrier is approximately 10- 9 s [31], and increases to approximately 13 s at 5 K

[39, 40]. At low temperature, when the applied field reached zero, the dipole moments

of some nanoparticles were still polarized, and therefore, a small remnant magnetization

was observed. The superparamagnetic behavior of the nanofibers at room temperature is

especially useful for applications in which alternating nonuniform fields are needed, as

this would reduce the dissipative energy in the device significantly.
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Figure 7-8. Magnetization curves of ferromagnetic nanofibers: (a) PEO nanofiber with
(28 wt%) magnetite nanoparticles, (b) PVA nanofiber with (8 wt %) magnetite
nanoparticles.
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A SQUID magnetization curve for PMMA fiber containing 37% by weight of

6nm and 16 nm magnetite particles is shown in Figure 7-9a which is exactly similar to

Figure 6-5. The fibers are superparamagnetic in nature like PEO/PVA magnetite fibers

(Figure 7-7). However the relaxation studies of the fiber reflected the intrinsic difference

between the 6nm and 16 nm embedded polymeric matrix. Figure 7-9b compares the

relaxation curves for 6 nm and 16 nm PMMA/nanoparticle matrix. The experiment was

performed at 5K. The sample were exposed to a pulse of 1000 Oe (- 0.1T) magnetic

field. The resultant decay in magnetization was then measured as a function of time. 16

nm nanoparticle relax very slowly compare to 6 nm particles. The experiment was

performed at a low temperature (5K) to enhance the relaxation time of the particles

thereby making it easy to measure. The above measurements are a definitive proof of

nanoparticle relaxation in the polymeric matrix.
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Figure 7-9. (a) Magnetization curve of the PMMA/6 nm and PMMA/16 nm magnetite
nanoparticles at 300K. Notice the remnant magnetization is zero at zero field. (b)
Relaxation curve of 6 nm and 16 nm nanoparticles embedded in polymeric matrix at 5K.

7.4.3.3 Nanoindentation analysis

The elastic modulus of the fibers was evaluated using an AFM indentation

technique according to the following formula [41-45]

dP * (A~ 112

S= =2E( -1 (3)
dAZ, X

Here, S is the slope of the unloading curve at Pmax, P is the applied load, A is the

contact area, AZi is the indentation depth, and E* is the effective Young's modulus of the

contact as defined by

1 = -v- -- + l (4)

In Equation (4), Es and Et are the elastic moduli, and vP and vt the Poisson ratios

of the sample and the tip, respectively. The tip used was diamond with asymmetric
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pyramidal geometry; indent size was characterized by the lateral distance from the apex

to the base of the triangular impression [44]. Et and Pt are assumed to be 130 GPa and

0.2, respectively, corresponding to the bulk values of diamond [35-37]. The nanofibers

were indented in the radial direction. A schematic of the tip-sample interaction during

the indentation test is shown in Figure 7-8. The method is applicable here due to the fact

that the diameters of the fibers (>150 nm) are much larger than the diameters of the

contact area (<10 nm).

P

AZt

t
AFM Probe

Fiber

Figure 7-10. A schematic of tip-sample interaction during the indentation test.

The results of the indentation tests are shown in Figure 7-9 for PVA/magnetite

nanofiber. Mica was also indented to evaluate the bending of the AFM cantilever, which

was then subtracted from the raw PVA/magnetite data to get fiber properties. In these

indentation tests, the slopes of the top portions of the unloading curves were used to

evaluate the modulus of each sample. Assuming the tip geometry is the same for all the

indentations, the relative changes in indent size are sufficient to relate contact areas; here,

we equate the apex to base distance to a contact radius, r. The Poisson ratio, v, is

assumed to be the same for all fibers within each group. The ratio of modulus of

different samples within each group can then be evaluated using the formula:

(dP/dAZi) p.max. r,E,(dPdZ 2 2E(5)
Pmax,2
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Figure 7-11. Indentation curves for PVA/magnetite(8 wt%) nanofiber: (a) calibration on
hard surface (mica), cantilever bending without indentation; (b) indentation curve on
PVA/magnetite nanofiber, cantilever bending and indent; (c) indentation curve on
PVA/magnetite after subtracting the cantilever bending.

Table 3 shows the indentation data for all the nanofibers. AZi is the total

displacement recovered from P-Pmax to P=O. AZt is the total indentation depth, which

measures the penetration of the tip into the sample surface, including both the inelastic

and elastic deformation of the material. The moduli were obtained by comparing with

the reference epoxy sample within each group using Equation (5). The modulus of the
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reference epoxy sample was determined to be 1.52 GPa using a Triboindenter. The

indent size, r, was found to be 40 nm for the PEO and PEO/magnetite nanofibers, 10 nm

for PVA and PVA/magnetite nanofibers, 20 and 10 nm for reference epoxy samples

under conditions used to test the PVA group and PEO group, respectively. As shown

inTable 3, after including magnetite nanoparticles (8 wt%) within PVA nanofibers, AZi

was statistically the same, and AZt decreased. This indicates that the modulus of the PVA

nanofibers was maintained and the inelastic deformation was decreased due to the

reinforcement effect of magnetite nanoparticles. After including (28 wt%) magnetite

nanoparticles within the PEO fiber, AZi decreased, but AZt increased showing that the

modulus of PEO nanofibers was increased due to the reinforcement effect of magnetite

nanoparticles. However, the increase in inelastic deformation of the PEO/magnetite

nanofibers indicates that the short chains of polymeric shell around the nanoparticles

were detrimental to the mechanical properties of the nanofibers and overwhelmed the

effect of magnetite reinforcements as the concentration of the magnetite nanoparticles

within the fibers increased from 8 to 28 wt%.

Table 7-4. Nanoindentation data of the nanofibers.

PVAa  PVA+Fe304a PEOb PEO+ Fe 304b Epoxya Epoxyb

AEi (nm) 12.33±4.46 14.55±2.67 9.36±1.41 5.92±0.68 22.14±1.42 10.92±0.35

AE, (nm) 80.04±5.05 51.23±4.46 170.32±15.65 194.24±14.40 67.83±1.42 38.94i1.87

Modulus 4.8 ±1.73 4.1 ±0.75 0.66 ±0.10 1.04 ±0.12
(GPa) 1.52+0.12* 1.52+0.12*

a Trigger setpoint of deflection signal of the cantilever is 1.2 V.
b Trigger setpoint of delfection signal of the cantilever is 0.6V.
' The modulus is determined independently by a triboindenter using a Berkovich tip.

7.4.3.4 Magnetic field-response behavior

The SQUID tests showed that the magnetite nanoparticles within the nanofibers

were easily magnetized by an external magnetic field and the dipole moments of the

nanoparticles were readily polarized in the direction of the external magnetic field. It is

well known that the magnetic dipole experiences a torque in a uniform magnetic field and

214



a translational force in a magnetic field gradient. For the composite nanofibers

containing magnetite particles in an external magnetic field gradient, the nanofibers will

be deformed by the translational forces experienced by the embedded nanoparticles.

Figure 7-10 shows the response of a strip of PVA/magnetite nonwoven mat to the field

provided by a small laboratory magnet. One end of the nonwoven mat was fastened onto

the surface of the table while the other end was free to move. In the absence of the

magnetic field, the nonwoven mat lay flat on the surface of the table (Figure 10 (a)).

When the magnet was placed above the nonwoven mat, the fabric was deflected by the

translational forces in the direction of increasing magnetic field as shown in Figure 10

(b). As the magnet was brought closer to the fabric, the greater magnetic field gradients

experienced by the nonwoven mat induced larger translational forces on the magnetite

nanoparticles, causing a greater deflection of the free end of the mat towards the magnet (

Figure 10(c)). The PEO/magnetite nonwoven mat showed similar response behavior to

the laboratory magnet as the PVA/magnetite nonwoven mat. Clearly both

superparamagnetic fabrics produced by the electrospinning technique exhibited field-

responsive behavior.

Figure 7-12. Field responsive behavior of PVA/magnetite fabric: (a) without magnetic
field, (b) within low gradient of magnetic field, (c) within high gradient of magnetic field.

7.5 Model for the Deflection of a Single Fiber

Following ideas similar to those described in chapter 6, the increment in the

modulus of the fiber due to the interaction of the nanoparticle with the external magnetic

field was also modeled. Contributions from the dipole-field interactions and dipole-

dipole interactions were considered, assuming the fiber can be treated as a bent cantilever
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beam of length L, with circular cross section of diameter D, and constant radius of

curvature, R. The nanoparticles of diameter d were assumed to be uniformly distributed

in the fiber and initially aligned with the external magnetic field. We also assumed that

the nanoparticles have an infinitely long relaxation time. So they achieve the

configuration as shown in figure 8-1 when they are deflected.

L

$~ ' cfQBefore R

; ( nAfter

............ O(,' tL

9o,,

(a) (b)

Figure 7-13. (a) Schematic of a fiber embedded with magnetic nanoparticles before and
after deflection in a magnetic field. The adjacent figure (b) shows the modeling
parameters.

For small deflections 6 L and R >> L, we can approximate sL = L2 / 2R . O(x) is

the angle subtended by the distance x along the arc of the fiber, O(x) = x / R = 2x8L / L2 .

Normalizing both x and 8 L by the fiber length, L, we can write

O(x') = 2x'i L' where x' = x/ Land SL'= L IL

Net change in energy due to the deformation of the fiber under an external

magnetic AE, can be written as

AEt = Eh+ A EP +AEf (1)

where AEhis the contribution from the change in interaction energy of the

magnetic dipole with the orientation with the external magnetic field , AEp is the net

change in the interparticle interaction energy, and AEf is the energy change due to the

bending of polymer fiber matrix component.
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The resulting change in energy can be converted into change in bending modulus

by the following relation

(2)
1 a 2AE

S=

AEh for the whole length of the fiber can be written as

AEh = - nmHL[cos(Oi +O(x)) - cos 0 ]dx'

where j) is the volume fraction of nanoparticles in the fiber..

Double differentiation of AEh yields

L29_ 1 4
2 - fnmHL[cos(O, +0(x'))].(2x')2 dx =nmHL

88L' 0 3

(3)

(4)

In this derivation we assumed that for small deflection 9(x') -+ 0. n is the linear density

of the particle and is given by

3d D2
nY t=

2d 3 (5)

Substituting for m in the above equation we get

4
S,, = -4pMH.3 (6)

The calculation of AEP was divided in two steps. In the first step the interaction of

any arbitrary dipole was calculated with all the other dipoles in the fiber. Next this

interaction energy was integrated over the whole fiber length. Overall interaction energy

can be written as
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L t-a 2 2  1
AE = tf .[cos(0(t) -0(x)) - 3cos O(x) cos y(t)]dxdt +

0 0 41ruo (t - x)3 (7)L L 2 2
I (t x)3 .[cos(O(t) -(x)) - 3 cos b(x) cos y(t)]dxdt
0 t+a (t - )

where O(t), O(x) are the angle by the which the dipole at position at t and x rotated due

to bending of the fiber. O(x) and y(t) is the angle which the respective dipole makes

with the line joining the center of the two dipoles (See Figure 8-3).

Here a is the particle diameter. Non-dimensionalizing a, x and t with respect to L

we can write the above equation as

I n-a 2 2 1

E, n ' .[cos(O(t') -0(x')) - 3cos #(x')cos y(t')]dx'dt' +
o 4.o " (t' - x)

(8)
S24 ' 3 .[cos(B(t') -(x')) - 3cos (x')cos y(t')]dx'dt'

9(t), 9(x) are the angles by which the dipoles at position at t and x rotated due to

bending of the fiber. O(x) and y(t) is the angle which the respective dipole makes with

the line joining the center of the two dipoles (See Figure 8-2).

Figure 7-14. Schematic of the calculation in change in the dipolar interaction between
two dipoles due to the bending of the fiber.
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Simple trigonometrical analysis yielded

Pf(x) = [O(t) - (x)]; O(x) = [r /2 + P(x)/2]; y(t) = [r /2 - (x) / 2]

Solution of equation (11) for stiffness modulus gives

(9)

(10)

where a=
2d3

3vD2L

AEf is the change in energy associated with the bending of the fiber itself and is given

by

AE = I GI 2F2 R2 0JR
(11)

where G is the fiber modulus and I is the moment of inertia. Converting this energy

change into associated change in modulus gives

- 2SF = 4 L (12)

For < = 10%, D = 200 nm, L= 200 ýtm, H - 4 x 105 A/m and M - 4.46 x 105 A/m

(saturation magnetization of magnetite), and G=200 MPa, the ratio of incremental change

in stiffness due to different interactions were calculated as follows

-- 600; SP 10- 4

SF S,
(13)

It can be seen that the bending stiffness of the magnetic fiber can be increased

significantly by the coupling interaction between the external magnetic field and

nanoparticles magnetic moment. The contribution of change in interparticle interaction

to the stiffness of the fiber is negligible.
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The contribution of change in interparticle interaction to the stiffness of the fiber

is negligible. The SH in equation 26 depends on the volume fraction of the nanoparticle

b, magnetization M and field strength H. This corresponded to an increment in stiffness

by 0.03 MPa for 37 wt% magneite/PU nanofiber assuming the dipoles of the magnetic

nanoparticles are completely saturated (M = 4.46xl 05 A/m and H=0.5 T). This change in

increment is too small to be able to observe physically. b, M, or H can be increased to

increase SH. There is a practical upper limit on 4 [31] as was reported before. Higher

volume fraction of nanoparticles results in defects in the polymeric matrix which has a

negative effect on the strength of the polymer. Ho can be increased but there are practical

limitations because the weight of the setup to generate magnetic field scales

exponentially with strength of the magnetic field. Increasing M is the only practical

handle which can be used to increment the strength of the fiber. Hence incorporating

higher magnetizable high Neel relaxation nanoparticles in the polymeric material can

increase the stiffness significantly. Nanoparticles of the alloys of cobalt and iron have

magnetization 3-4 times that of magnetite and their synthesis method is similar to that of

the synthesis of organic route magnetite nanoparticles [46]. It should be possible to

electrospin these nanoparticles and this will be explored in future.

7.6 Conclusions

Superparamagnetic polymer nanofibers ranging in diameter from 140 to 400 nm

were obtained via the electrospinning of polymer-stabilized magnetite nanoparticle

suspensions in PEO and PVA solutions. The nanoparticles were observed to line up

within the fibers in columns parallel to the fiber axis direction, apparently induced by the

electrospinning process. Both sets of fibers were superparamagnetic at room temperature,

and responded to an externally-applied magnetic field by deflecting in the direction of

increasing field gradient. Nanoindentation tests showed that magnetite nanoparticles

reinforced the mechanical properties of nanofibers, although the significant amount of

short-chain polymer adsorbed to the nanoparticles to ensure their suspension stability

increased the inelastic deformation of the nanofibers.
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A mathematical model to predict the change in stiffness of a magnetic fiber doped

with high N&el relaxation particle under an applied magnetic field was developed. The

bending modulus of magnetic fibers was predicted to increase significantly due to the

interaction between the dipole moment of nanoparticles and the external magnetic field.

Different size magnetite nanoparticles were produced using seed mediated growth and a

general scheme to electrospin these organic based nanoaprticles in nanofibers was

devised. The increase in stiffness scales with the magnetization of the nanoparticles.

Hence incorporating high magnetizable nanoparticles can enhance the strength of the

field responsive intelligent materials.
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Chapter 8

Conclusions and Future Work

8.1 Summary of Research

Magnetic Nanoparticles were used as building blocks to create 3D magneto-

responsive structures. A Template based technique coupled with an electrostatic based

adsorption was exploited to create higher order magnetic structures. The behavior of the

structures under the applied magnetic field was further exploited to create novel complex

structures.

The layer-by-layer technique was used to coat polystyrene beads with

polyelectrolytes of alternating charge and with charged magnetic nanoparticles [1]. An

inexpensive and versatile approach was developed for the synthesis of monodisperse

magnetoresponsive rods of desired diameter, length and magnetic susceptibility based on

the confined alignment of magnetic beads in microchannels of selected channel height,

followed by localized hydrolysis of sol-gel precursors within polyelectrolyte shells

adsorbed on the beads [2]. The polystyrene cores could be removed either by solvent

dissolution or by calcination to form hollow shelled chains. The reorientation dynamics

of single and clustered chains following the application of an external magnetic field was

evaluated theoretically, with favorable comparisons with the experimental data.

The magnetic response of the core-shell bead was compared to the commercially

available matrix-type beads in which the nanoparticles are distributed in the bead core. A

theoretical and experimental study of the interactions of magnetic nanoparticles within

planar structured arrays was performed [3]. The results indicated that the magnetization

curves for these arrays depend on their orientations relative to externally-applied

magnetic fields. When the layers and the magnetic field are co-directional, the apparent

magnetic susceptibilities are enhanced, but a decrease is seen when the field is normal to

the nanoparticle array. The magnetic response of a core-shell type bead coated with one

or more ordered layers of magnetic nanoparticles was evaluated by treating the particles
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at any position on the surface as being in a planar array tangent to the surface of the bead

at that position; the effective magnetic susceptibilities of the beads were estimated by

integration over the bead surface of the orientation-dependent responses of these layers to

the applied magnetic field. The effective susceptibility of magnetite nanoparticle

monolayer-covered beads can increase by up to about 30 percent, but the effects are

reduced as the number of layers increase.

Next we developed an efficient, one-step method to create magnetic nanowires

consisting of permanently-linked chains of magnetic beads of varying flexibility tethered

to a patterned glass surface using simple amidation chemistry [4]. The flexibility of the

nanowire was governed by the molecular weight of the molecule used to covalently link

the beads, and its length by the height of the microchannel in which it was synthesized.

The nanowire diameter was determined both by the bead size, and by the number of

beads adhering to each dot in the microstamped, patterned array. Longer nanowires can

form loops attached at two points on the glass surface. Both single flexible chains and

flexible loops can adopt different configurations (straight, hairpin, S-shaped, etc.) when

subjected to magnetic fields, the configurations depending on the directions of these

fields. Shorter, less flexible nanowires align with the field always and do not exhibit the

more exotic configurations seen for long, flexible chains and loops. The chains were also

tethered in a microchannel. These magnetic nanowires can have potential use in

microfluidic pumping and mixing processes and in microparticle manipulation.

The use of soft charged templates was also explored to create magnetic rings and

magnetic icosahedra-shaped clusters. The modeling of the behavior of the magnetic rings

in a magnetic field predicted that the rings will aggregate to form links. A mixture of

surfactants which self-assembled into discs and icosahedras was utilized [5, 6]. It was

found that the charge difference between the edge and the surface of the surfactant

structures formed was not sufficient to aid selective adsorption of the nanoparticles on the

edges.

Radiation crosslinking served as an efficient route to create "templateless"

clusters [7-9]. Poly (ethylene) oxide coated magnetic nanoparticles were synthesized and
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were crosslinked in situ. The extent of crosslinking was controlled by the dosage rate.

Excessive crosslinking resulted in the formation of magnetic gels.

Lastly, the effect of magnetic nanoparticle size was studied. An organic route

synthesis was adopted to make fairly monodisperse magnetite nanoparticles up to 16 nm.

16 nm particles exhibited measurable Noel relaxation [10]. Modeling suggested that the

incorporation of high Neel relaxation nanoparticles in a structure can improve its energy

absorbing capacity/modulus of the structure under an applied magnetic field. This was

experimentally verified with a drop ball test on foam impregnated with 25 nm iron

nanoparticles which have inifinite Neel relaxation. For practical applications magnetic

nanoparticles were embedded in polymeric nanofibers. As a proof of concept, first

superparamagnetic polymeric nanofibers were produced via an electrospinning technique

from colloidally-stable suspensions of magnetite nanoparticles in polyethylene oxide and

polyvinyl alcohol solutions [11]. The magnetite nanoparticles were aligned in columns

parallel to the fiber axis direction within the fiber by the electrospinning process. The

polymer/magnetite nanofibers exhibited superparamagnetic behavior at room

temperature, and deflected in the presence of an applied magnetic field. The mechanical

properties of the nanofibers were maintained or improved after incorporating the

magnetite nanoparticles. Finally high Neel relaxation magnetite nanoparticles

synthesized using the organic route were electrospun in PMMA and PU nanofibers.

Their magnetic response was modeled. These fibers can have potential application as

adaptive energy absorbing material.

8.2 Future Research Directions

Applications of the flexible chain for micropumping and micromixing [12] uses in

microfluidic channels should be studied. This would require use of a rotating magnetic

field. Preliminary results have shown that the tethered chains grown in a microchannel

respond to the rotating field and can be used as micropumps for pumping small beads in a

microfluidic channel. This should be explored further. Also the effect of a variable

magnetic field on the response of the tethered chains can generate different motions of

the chains and can have interesting applications [13].
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Self assembly of differently shaped magneto-responsive structures under an

applied field is another rich area for further study. Technique of Dendukadi et al. [14]

can be used to create charged templates of different shapes which can then be coated with

magnetic nanoparticles. Some preliminary work was also done where ring shaped

templates were used and the results were very encouraging.

"Smart Nanofibers" which can adsorb high energy under an applied magnetic

field can be made a reality if we can synthesize high Neel relaxation, high magnetization

nanoparticles. Nanoparticles of alloys of cobalt and iron are promising candidates for

this application [15].
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