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Adverse weather poses a significant threat to transportation safety. Road weather 

information systems (RWIS) aim to mitigate the impact of adverse weather by detecting 

spatiotemporal variations of weather and/or road pavement conditions in real time. Due to 

the lack of a detailed, unified guideline and diverse weather conditions across the United 

States, state and city transportation agencies follow different practices for choosing 

locations for environmental sensor stations (ESS) (the components that collect RWIS 

weather data). To fill this gap, this study proposes a comprehensive cell-based 

methodology that is data-driven, using crash records, weather data, and road network 

information. The contribution of the proposed methodology is that the model optimizes 

overall benefits derived from RWIS based on weather-sensitive crashes. Both normal and 

adverse weather crash data are used to derive cell-vulnerability rates in adverse weather. 

First, a sequential procedure is devised to identify the required number of stations for the 

region. Then, optimal weather station locations are identified using a genetic algorithm. 

The proposed approach is especially suited for optimizing region-wide ESS locations 

involving complex road networks or a large number of road segments. A case study was 

conducted using data from the Crash Records Information System (CRIS) between 2010 

and 2013 in the Austin District, an area especially vulnerable to rain. It was found in the 

case study that ten ESSs would be a good choice to implement in the region. Their proposed 

global optimal locations layout would cover 94% of total crashes occurring in the region 



vi 

 

based on 20 miles of coverage for each station. The RWIS would have spatial coverage of 

48% and 92% reliability should one ESS fail.  
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Chapter 1. Introduction 

A wide range of factors and their interactions contribute to the occurrence of 

crashes, including road geometric characteristics, traffic volume, pavement surface 

conditions, lighting conditions, driver drowsiness, and weather conditions (1-4). Among 

these factors, adverse weather is significant and one that is perhaps the most uncertain and 

uncontrollable. The Federal Highway Administration (FHWA) defines weather-related 

crashes as “those crashes that occur in adverse weather (i.e., rain, sleet, snow, fog, severe 

crosswinds, or blowing snow/sand/debris) or on slick pavement (i.e., wet pavement, 

snowy/slushy pavement, or icy pavement)” (5). Rain, sleet, snow, and fog can undermine 

the driver’s capability, vehicle control, road friction, and infrastructure traffic operations, 

making safe driving more challenging and increasing crash risk. During adverse weather 

conditions (e.g., rain or snowfall), a wet/icy pavement surface presents much lower skid 

resistance, which has been identified as a significant contributing factor in crashes. 

Approximately 5,870,000 vehicle crashes happen each year in the United States. It is 

estimated that, on average, 23% of all crashes are weather-related, leading to nearly 6,250 

fatalities and 480,000 injuries each year nationwide (5). According to the 2013 crash report 

from the Texas Department of Transportation (TxDOT), 227 fatalities and 39,536 injuries 

occurred in Texas during adverse weather conditions (6).  

Road weather information systems (RWISs) are emerging as a primary road 

weather response management tool that aims to reduce the impact of adverse weather on 

crashes and to aid maintenance management decisions. Through strategically placing 

environmental sensor stations (ESSs) to supply RWISs with data, region-wide weather and 

pavement conditions can be monitored in real time, which is the basis for providing traveler 

information and alerts. This information can be incorporated with existing intelligent 

transportation system (ITS) infrastructure to make strategic decisions. RWISs have become 

a critical component of many agencies’ maintenance efforts. RWISs can include pre-

existing data stations that are run by national agencies such as the National Weather Service 

(NWS), the Federal Aviation Administration, the US Geological Survey, the Department 
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of Agriculture, and the Environmental Protection Agency. Transportation agencies are 

considering ways to integrate RWIS with other ITS applications so weather information 

can support a broader range of ITS services. Studies show that an effectively deployed 

RWIS has a significant impact on reducing the number of crashes in a region (24). Many 

DOTs have experienced a significant benefit in terms of better safety, maintenance, and 

traffic operation during adverse weather conditions when using a well-placed RWIS (27).  

The ESS location plays a crucial role in determining the performance of the system. 

Data acquired from ESS are useful for maintenance, operations, and traveler information 

purposes. The analytical problem of determining the optimal ESS locations has gained 

increased research interest in recent years. The FHWA has provided recommended ESS 

siting guidelines (17), but there are no specific standards for agencies to follow. In the 

absence of any established methodology, DOTs and other transportation agencies use 

different methods to determine ESS locations.  

This study introduces a comprehensive ESS location modeling framework that can 

be modified based on the needs of different transportation agencies. Apart from the 

difference in specific performance criteria, the prevailing thought behind previous 

approaches is that ESSs should be deployed in the regions with more weather-related 

crashes. The key difference between this study and other studies lies in this study’s 

assertion that not all crashes occurring during adverse weather are necessarily due to 

changes in weather conditions. Deploying ESS to minimize weather-related crash rates 

may not be effective. The proposed model combines regional crash data with road, traffic, 

and weather information to define a location’s vulnerability to crashes when weather 

conditions change from good to adverse. The model incorporates two major planning 

elements: 1) spatial coverage and 2) reliability of the system under failure of one ESS, as 

constraints to the optimization problem. First, a sequential procedure is devised to identify 

the required number of stations for the region. Optimal weather station location layouts are 

identified using an iterative genetic algorithm procedure. 

Organization of this thesis is as follows. This report consists of five major sections 

including this chapter. In Chapter 2, a detailed background of the ESS and its functions is 
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provided to convey its importance in RWIS, followed by a detailed literature review to 

understand industry and government considerations for deploying ESS. In Chapter 3, a 

strategic ESS methodology is proposed with framework details, optimization problem 

formulation, and solution approach. In Chapter 4, proposed methodology is applied to find 

the optimal ESS location layout for TxDOT’s Austin District. An analysis of crash and 

weather data for the region between 2010 and 2013 is performed. The final layout for ESS 

location is discussed with analysis of the coverage and reliability of the resulting RWIS. 

Next, the effects of changing various input parameters in the proposed methodology are 

discussed. Finally, a conclusion is made in Chapter 5 with discussion of the limitations of 

this study along with suggestions for future work in this area. 
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Chapter 2. Literature Review 

2.1 Road Weather Information System 

The term road weather information system (RWIS) refers to the actual hardware, 

software, and communication interfaces necessary to collect, transmit, and receive field 

observations at the user end. Historically, an RWIS has been used mainly for winter 

maintenance purposes. However, recent developments have enabled RWISs to detect and 

monitor variations of road weather conditions that can impact roadway maintenance and 

operations year round. The component of an RWIS that collects weather and pavement 

data is the environmental sensor station (ESS).  

ESSs are located at a fixed roadway location and measure atmospheric, roadway, 

and bridge surface and/or hydrological conditions. These stations are typically installed 

within 30 to 50 feet (9 to 15 meters) from the edge of the paved surface to shield the sensors 

from the effects of traffic (e.g., heat, wind, and splash) and thus preserve their accuracy, as 

shown in Figure 1 (18). Various sensors and their typical heights installed on an ESS are 

shown in Figure 2 (18). A sensor’s height may need to be elevated in heavy snow or 

flooding areas. Stations typically operate on the local electric power line supply system 

with battery backup devices.  
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Figure 1. Desired Tower Location Relative to Roadway (18) 

 

Figure 2. Typical ESS (18)  

Remote processing units (RPUs) placed along the roadway may contain some or all 

of the road and weather sensors. In certain cases, pavement sensors are located apart from 
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the RPU, with several pavement sensors capable of being linked to one RPU. However, 

these RPUs have limited local intelligence for processing, so data is transmitted to a central 

server, which could be generically termed a central processing unit (CPU). This central 

server is typically located in a highway maintenance facility and provides communication, 

collection, archiving, and distribution of the data. The raw data are used directly or in 

coordination with a service provider to prepare now casts and/or forecasts. Forecasts can 

be used to predict site-specific weather and pavement conditions. A conceptual flow 

diagram of data flow and usage is depicted by Figure 3 (16). 

 

Figure 3. Conceptual Diagram for RWIS (16) 

Data collected from environmental sensors in the field are stored onsite in an RPU 

located in a cabinet. This data is sent to the CPU and is then processed and used by 

automated warning systems and/or managers in traffic management centers, road 

maintenance facilities, and emergency operation centers for further decision-making.  
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The expected life of an ESS is typically 25 to 50 years, after which the entire system 

will need to be replaced (28). Two types of cost are involved: capital, and operations and 

maintenance (O&M). Capital costs are those incurred during the design and deployment of 

an RWIS. The installation cost of the water detection system is almost half of the expense 

for the ice detection system (16). O&M costs include those required for operation (e.g., 

electricity, data processing) and regular maintenance of sensors and other ESS components. 

Additionally, RPU and CPU systems need to be upgraded every 5 years. Details of unit 

costs for capital and O&M have been provided by the USDOT’s ITS Joint Program Office 

(31). Table 1 shows details of some ESS installations in Abilene (Texas) and Florida (30, 

31).  

Table 1. Capital and maintenance costs of ESSs deployed in Abilene and Florida 

 Abilene, Tx Florida 

 [in 1997$] [in 2009$] 

Expected Life 50  25 

Type Icing Detection Icing Detection 

Capital Cost $42,000  $25,000–40,000 

O&M $5,460 per unit per year $1,600–3,000 per unit per year 

 

ESS installation can be categorized as “regional” or “local” (18). A single ESS can 

satisfy both regional and local needs. Regional ESSs are designed to provide road weather 

information that can be representative of conditions over a larger area or a road segment. 

A local ESS is used to gather information for a specific adverse weather occurrence at a 

specific location, such as icy pavement, flooding (such as at a short roadway segment with 

poor drainage), a low water crossing, cross drainage channel, or a certain bridge structure. 

Regional ESS site selection is mainly based on maximizing total coverage through the 

network of sensors. Local ESS siting focuses on a specific sensor’s requirement; these are 

usually installed near bridges or intersections or in high crash locations. In general, regional 

ESSs have more types of sensors and are situated at locations with unobstructed field of 

view. A spacing of 20 to 30 miles along a road is recommended between regional ESSs. A 
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regional ESS should be located along a uniform roadway segment so that the local weather 

impacts on sensors can be minimized. Other conditions that affect the location of ESSs 

include available power, such as whether the unit can be directly wired to the system or  

might require a solar power system or generator with a backup battery supply (such as an 

ESS in a remote location).  

While considering the road weather information requirement, it is important to note 

that weather sensors for specific types of severe weather might not be available or have 

inherent limitations. For example, observations for weather conditions that develop 

quickly, such as a thunderstorm, are difficult to automate using sensors deployed as a part 

of an RWIS ESS. Currently, there are no automated sensors for sun glare, which can 

potentially blind a motorist depending on time of day and direction of travel. Sun glare has 

been cited as a contributing factor for crashes (18). Sensors also have limitations in 

measuring cloud coverage (the sensor typically only scans directly overhead) as an 

individual standing on the ground sees it. Cloud sensors are not usually deployed as a part 

of ESSs as they require frequent maintenance compared to other ESS sensors. 

2. 2 ESS Siting Methods 

 Substantial research efforts have been devoted to measuring the impacts of various 

adverse weather conditions on road safety, based on statistical modeling and experimental 

observations. This problem is intrinsically complicated, due to the interplay of multiple 

factors, such as weather and pavement, weather and driver adjustment, etc. As an example, 

(1) and (3) both attempted to quantify the contribution of adverse weather to crashes, along 

with other factors, including roadway design, traffic, daylight, and pure randomness. In 

(7), a comprehensive review is presented on studies from 1970 to 2005 regarding adverse 

weather and crashes; a meta-analysis is applied to summarize the findings. Major findings 

included the conclusion that the crash rate usually increased during precipitation, while 

snow had a greater impact on crash occurrence than rain did. In (8), crash rate ratios were 

developed to evaluate the relationship between crash risks and skid resistance, with the 

suggestion that higher skid scores were required for wet weather conditions to maintain the 
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same safety level. Other case studies, field observations, and descriptions of the state of 

the practice can be found in (9) through (14). A critical review is presented in (15), which 

compared two schools of thought for analyzing the weather-safety relationship (i.e., 

explanatory modeling versus data-driven analysis) based on a summary of weather-safety 

studies from 1960s to 1990. In (21), road slipperiness is estimated through regression and 

recommendations are made based on slipperiness and local and regional climate variations. 

In (22), a cell-based approach is proposed in which a region is divided into equal-sized 

cells, and these cells are ranked based on criteria considering such factors as road surface 

temperature, precipitation, traffic, and collision pattern. In (23), a safety concern index is 

proposed, and optimal RWIS locations are identified as the ones that produce minimal 

index scores for the road network under consideration.  

Over 2,400 of the ESSs deployed by state agencies are primarily used for winter-

maintenance activities. States have seen significant benefits from using RWIS. For 

example, Kansas saved $12,700 in labor and materials at one location the first eight times 

that the state DOT used information from the RWIS for decision-making on winter 

maintenance operations (25). Massachusetts reported a savings of $53,000 in 1994–1995 

by using RWIS information for winter maintenance. The Minnesota DOT used the 

information from their 17 RWIS stations to improve their winter maintenance efficiency, 

with an estimated return on their RWIS investment of 200 to 1,300%. The Oregon DOT 

expects to save $7 million over 25 years due to reduction in usage of chemicals (i.e., for 

deicing), more efficient scheduling of crews, and decreased damage to vegetation. Over 

two winters, an RWIS station saved Pennsylvania more than $57,000. 

2.3 State of Practice 

 In 2003, the FHWA compiled a list of best practices for road weather response 

management (20). However, due to the lack of a detailed unified guideline and the diversity 

of road weather issues throughout the country (e.g., snow is a concern in New Hampshire, 

Minnesota, Idaho, Montana; floods present problems in Dallas and South Carolina), state 

and city transportation agencies in the United States now follow different, localized 
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practices in choosing ESS locations. State DOTs may prioritize ESS location placement 

according to a variety of factors, which include logistics in winter maintenance and 

environmental footprint (New Hampshire DOT), regional coverage (North Dakota DOT), 

local and regional balance (Michigan DOT), and past experience and analysis of accident-

prone spots (Caltrans, Alaska DOT). More details on the state of practice about RWIS ESS 

implementation are described below.  

 The Alaska Department of Transportation and Public Facilities (ADOT&PF) 

operates a network of ESSs strategically located along the highway system. The primary 

consideration in establishing new sites is feedback from the Department’s maintenance and 

operations personnel in regard to making winter maintenance decisions, such as snow 

plowing and anti-icing applications (32). Other considerations include the NWS use of the 

observations to improve local forecasting and weather warnings, and to help the public 

make informed travel decisions through the 511 traveler information system. Other 

significant factors are cost and the availability of power and communication. Sites that 

don’t have direct power require a power generator, while sites that do not have nearby 

telephone or State of Alaska network service require a wireless communication solution. 

Other factors include topography, the natural environment around the site that can affect 

sensor readings, and the availability of right-of-way. Each active camera is polled one to 

four times per hour, capturing a single still image each time. The ADOT&PF temporarily 

archives these images for up to 2 days. 

 The Minnesota DOT deployed 76 ESSs by using siting procedures developed in 

conjunction with a meteorologist from the University of North Dakota. Locations for the 

sensors were determined by the sensor’s function, i.e., whether for maintenance operations 

or forecasting (33). Then, meteorologists were able to assess local weather conditions at 

each location and determine the siting method that would provide representative readings 

of weather data. In all, 94 stations were distributed throughout the state with color cameras 

at 74 sites. All the sites are networked and most are broadband to achieve higher reliability, 

greater flexibility, and the ability to share information with other data sources like traffic 

counts. 



  

11 

 

Since 2004 the Iowa DOT has used the USDOT’s Clarus and the FHWA Road 

Weather Management Program to develop and demonstrate an integrated surface 

transportation weather observation data management system, to support their maintenance 

operations (34). The Iowa DOT maintains 62 observing stations located along major roads 

in the state. These stations provide about six observations per hour (35). 

The Montana RWIS consists of 73 sites across the state, as shown in Figure 4 (36). 

Weather information is mainly used by the maintenance division to schedule personnel and 

equipment, based on weather and pavement conditions. Real-time weather information 

improves response time, increases the efficiency of winter maintenance practices, and 

minimizes public exposure to hazardous conditions.  

 

Figure 4. Montana RWIS Locations (36) 

 In Florida, the weather conditions most likely to impact traveler safety are low 

visibility from fog, smoke, and heavy rain, as well as hazards presented by strong winds, 

wet pavement, and freezing temperatures. As adverse weather hazards risks tended to arise 

only at specific locations (i.e., bridges) rather than being distributed along roads, the 

Florida DOT (FDOT) deployed RWIS stations at the specific locations where the risks 

existed (37). As most of these conditions are local in nature, data on weather conditions at 

individual RWIS stations provided little guidance in assessing when and where such 
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conditions exist regionally on Florida roads. Thus, FDOT did not intend to use data from 

individual RWIS stations as a part of its decision-making process in responding to road 

weather conditions. Instead, the data from the RWIS stations was to be integrated with 

other data in the weather models used by meteorologists to generate weather condition and 

forecast data for individual road segments. Wind-speed monitors were placed on bridges 

(shown in Figure 5). 

 

Figure 5. Florida RWIS Locations (37) 

 Unlike other state DOTs, the Wisconsin DOT (WiSDOT) is not responsible for 

actual maintenance activities. WiSDOT contracts with each county to maintain the state 

and federal highways (38) within county borders. There are 56 ESS located throughout the 

state, as shown in Figure 6. The main purpose of the sensors is to provide toll-free and 

timely access to weather information to facilitate proactive anti-icing operations and 

advance warning systems. Wisconsin lacks the infrastructure through which to transmit to 

and share information with its 72 counties, which reduces the effectiveness of RWIS in the 

state. 
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Figure 6. Wisconsin RWIS Locations (44) 

2.4 Literature Review Findings   

The literature review revealed that RWIS can have significant impact on traffic and 

mobility during adverse weather conditions. In spite of the difference in practices among 

various DOTs for deciding ESS locations, two notable similarities are discernable. Most of 

the RWIS ESSs are situated along major highways and data are used mainly for road 

maintenance activities. Therefore, site selections are mainly focused on state-system 

roadway routes considering average annual daily traffic (AADT), geometrical conditions, 

local weather patterns, crash history, and distance from a maintenance center and/or ITS 

facilities. This approach is not effective for regional-level RWIS deployment.  

Several studies have proposed discretizing a road network and analyzing the crash 

pattern along route segments. Road networks are complex in geometry and have irregular 

shapes. Solving such a problem is computationally demanding. Some recent studies have 

adopted a cell- or zone-based weather-related crash aggregation approach to locate ESSs 

at the regional level. Weather-related crash count is mostly used to justify the need for 

ESSs in an area. Moreover, the total number of stations to be deployed is usually assumed 
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to be known and optimization formulations are focused only on site selection. There are no 

studies that look into how RWIS effectiveness as a whole system changes with the addition 

of a new station. A cell-based approach is proposed in Chapter 4, which addresses these 

limitations and can be used to determine the optimal number of sensors as well as their 

locations for larger regions. 
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Chapter 3. Methodology 

 The location of an ESS depends on how the road weather information will be used. 

Different data usages will lead to different objective functions. If the information is used 

primarily for winter maintenance-related activities, our objective would be to minimize the 

sum of total distances from the existing ITS facilities to the nearest ESS while maximizing 

ESS data benefits. However, if information derived from ESS data is used for road 

temperature modeling for supporting a weather-responsive traffic management or travelers 

information system (e.g., 511 system), we may be interested in optimizing the total 

information demand covered under an RWIS. Selection of an appropriate site can be best 

accomplished by a team of local road and weather experts. Having information on local 

road, traffic, and meteorological conditions could increase the usefulness of an RWIS. The 

approach developed in this study provides a general framework that can incorporate 

various objectives and constraints. This can be helpful to analyze ESS locations from 

different points of view. Northern US states may be mainly interested in using an RWIS 

for winter maintenance activities. However, southern states, such as Texas, may prioritize 

weather-responsive traffic management or travelers information systems. 

 This study is intended to contribute to the methodology of establishing a uniform 

ESS siting guideline and to optimize the overall utility of RWIS by strategically choosing 

deployment locations. Finding the optimal allocation of a resource based on a certain 

scenario is classic—e.g., logistic systems, electric systems, etc. This problem is commonly 

known as the Facility Location Problem. For RWISs, information distribution is a resource. 

Such information can affect a driver’s response and hence plays a key role. Based on the 

different objectives of RWIS deployment, the proposed framework can be formulated as 

different types of the Facility Location Problem, such as maximum coverage, P-centered, 

and P-median facility location problem. These formulations are computationally 

demanding to solve for finding a global optimum.  

 In reality, for the exact ESS site location selection, many other factors are taken 

into consideration, such as road segment topography, right-of-way, sources of sensor 
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hindrance, etc., so that collected information can be treated as representative of the nearby 

area. Adverse weather conditions usually prevail in a region rather than at a specific 

location on the road. The proposed approach considers weather conditions as uniform 

within a cell and information provided by a station in the cell is representative of weather 

conditions of every location in the cell. Road networks usually have a complex geometry, 

and defining candidate locations along the length of each road can create a large number 

of decision variables for a practical network. A cell-based approach is more practical to 

identify weather-sensitive crash areas within a larger area. It analyzes crash counts at an 

aggregate level so that crash count during different weather and traffic conditions can be 

compared in a simple and intuitive way.  

3.1 Proposed Framework 

 The study area can be represented as S(C, O) where 𝐶 is the set of all cells and 𝑂 is 

the geographical reference point. Location of each cell (𝑚, 𝑛) is assumed to be at the center 

of the cell. Each cell is identical with length (𝑙) and width (b). Theoretically, a cell size is 

decided such that traffic and weather conditions remain uniform throughout the cell. The 

study area is divided into small cells. Cell size should be chosen reasonably. If the cell size 

is too large, local crash risk factors are not captured, whereas if cell size is too small, it 

becomes computationally challenging to solve the facility location problem for optimum 

location. A simple approach to determine cell size is to start with a larger cell size and 

reduce cell size by half during every next iteration. The cell size that consistently yields 

optimal locations during consecutive iterations can be used as the cell size. 

The following attributes of each cell have been used in the model: 

● Cell size (unit: miles squared): 𝐿 * L 

● Cell index: (𝑚, 𝑛) 

● Study period (unit: days): 𝑇 

● Duration of adverse weather in 𝑇 (unit: days): 𝑁𝐴 

● Crash count in good weather conditions: 𝐺𝑚𝑛 
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● Crash count in adverse weather conditions: 𝐴𝑚𝑛 

● Cell-averaged AADT: 𝐴𝐴𝐷𝑇𝑚𝑛 

● Cell effeteness: 𝐸𝑚𝑛 

● Planning horizon: P 

● Normalized crash rate in good weather condition in cell (m,n): 𝐺𝑚𝑛
′  

● Normalized crash rate in adverse weather condition in cell (m,n): 𝐴𝑚𝑛
′  

Where, the cell-averaged AADT is calculated as the weighted sum of freeway, arterial 

roads, and minor road AADT, and where the weights are calculated according to the total 

length of different types of roads. A day is defined as an adverse weather day if any 

weather-related event crosses a predefined threshold value on that day—for example, 

rainfall greater than 0.3 inches, visibility during fog lower than 0.6 miles, etc. The threshold 

value to define a day as either good or adverse is subjective and may vary from location to 

location. To account for different exposures to traffic at different road locations, crash 

counts have been converted into a crash rate. The normalized crash rate within a cell is 

defined as the number of crashes per 100,000 vehicles. For each year, crash counts have 

been normalized as follows: 

 
𝐺𝑚𝑛

′ =  
𝐺𝑚𝑛 ∗ 𝑇

(𝑇 − 𝑁𝐴) ∗ 𝐴𝐴𝐷𝑇
 

(1) 

and  

 

𝐴𝑚𝑛
′ =  

𝐴𝑚𝑛 ∗ 𝑇

𝑁𝐴 ∗  𝐴𝐴𝐷𝑇
 

(2) 

 Well-posedness requires (𝑇 − 𝑁𝐴), 𝑁𝐴 > 0. The value of 𝑁𝐴 depends on the 

temporal resolution of the data available. In this study, the smallest time duration of one 

day has been considered.  

Cell vulnerability: Some crashes happen irrespective of weather conditions. A high crash 

count at a location could be due to several reasons, such as poor design or road condition, 

high traffic, low skid resistance on the pavement surface, drivers’ behavior, etc., that are 

unrelated to adverse weather. Deploying a weather sensor at such a location does not 



  

18 

 

necessarily lead to an improvement in safety. Hence, it is important to separate crashes that 

occur under normal conditions from those crashes that can be potentially prevented using 

weather-related measures. The vulnerability of a cell is defined based on the change in 

crash intensity during adverse weather.  

 Vulnerability of a cell (m, n) (𝑉𝑚𝑛) =  𝐴𝑚𝑛
′ −  𝐺𝑚𝑛

′  (3) 

   

Benefit/utility function: Several location attributes can limit the utility of an RWIS. For 

example, an RWIS station just near a hilly area may not be representative of weather 

conditions compared to an RWIS location in a flat area. These considerations can be easily 

incorporated as additional cell attributes that define their effectiveness for RWIS. For a 

given cell, the utility of RWIS stations is related to the vulnerability of cell, its 

effectiveness, and the distance of the cell from the nearest RWIS station. 

 Utility/benefit of ESS located in cell (m’, n’) for a cell (m,n) 

 𝐵𝑚𝑛 =  𝐸𝑚′𝑛′ ∗  𝑉𝑚𝑛 ∗ 𝑓(𝑑) 

 

(4) 

Where, 𝑓(𝑑) is the ESS coverage function. In (26), coverage function used is an 

exponentially decreasing effective coverage function based on Euclidean distance between 

a candidate location and the nearest RWIS station. There has been no established research 

that maps the effectiveness of a station to a location on the ground. For simplicity, a linearly 

decreasing coverage for ESS is assumed. 

 
𝐵𝑚𝑛 =   𝐸𝑚′𝑛′ ∗  𝑉𝑚𝑛 ∗ (1 − 

𝐷𝑚𝑛

𝑅𝑎𝑛𝑔𝑒
) 

 

(5) 

Where, 𝐷𝑚𝑛 is the distance between the center of a cell (𝑚, 𝑛) to the center of the nearest 

station cell (𝑚′, 𝑛′).  

Total cost: Ideally, RWISs should be located as close to an existing ITS facility as possible 

for power supply and convenient maintenance. The total cost includes fixed initial cost of 

deployment and total maintenance cost over the planning horizon.  
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 Total Cost (𝐶)  = (𝑁 ∗  𝐹𝐶 +  ∑ 𝐷𝑖𝑘 ∗ 𝑀𝐶 ∗ 𝑃𝑖 )/𝑃 (6) 

Where,  

FC is the fixed cost for deploying one RWIS station 

MC is the operation and maintenance cost per year per unit mile 

Dik  is the minimum distance from sensor station (i) to ITS facility (k) 

N is the total number of new RWIS stations to be deployed 

Coverage: Many state agencies may want their RWIS stations to be uniformly distributed 

in the region (39), which can be achieved by imposing a certain minimum uniformity index. 

For example, most crashes typically occur in the downtown area. Thus, the optimal solution 

may suggest putting more than one RWIS station near the downtown area. However, an 

agency may want to deploy RWIS stations more uniformly over the state so that various 

regions can be covered by one station, although those regions have fewer crashes. To avoid 

bunching the stations and to create an even dispersal within the space under an optimal 

solution, a minimum coverage index that will ensure specified minimum coverage is 

introduced in the region. 

Spatial coverage index: This index assumes each RWIS station has a decreasing spatial 

coverage function as the distance of a location from the nearest ESS increases. 

 𝐶𝑚𝑛 = 𝑓(𝑑𝑚𝑛) (7) 

Where 𝑑𝑚𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐𝑒𝑙𝑙(𝑚, 𝑛)𝑡𝑜𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝐸𝑆𝑆 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

Coverage index is defined as the ratio of current coverage to maximum coverage by ESS 

for a given number of stations.  

 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) =  
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
=

∑ (1−
𝑑𝑚𝑛

𝑟𝑎𝑛𝑔𝑒
)𝑚𝑛

𝑍
 

(8) 

Where Z’ is the maximum coverage area provided by ‘N’ sensors, given by: 

 𝑍′ =  𝑚𝑎𝑥   ∑ 𝐶𝑚𝑛

𝑚,𝑛

 
(9) 
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 𝑠. 𝑡 ∑ 𝑋𝑚𝑛

𝑚,𝑛

= 𝑁 

𝑋𝑚𝑛 = { 1       𝑖𝑓 𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑙𝑜𝑐𝑡𝑒𝑑 𝑖𝑛 𝑐𝑒𝑙𝑙(𝑚, 𝑛)
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             

 

(10) 

For a given number of sensor locations, the objective function has a unique value. A higher 

minimum coverage index results in a spread optimal location solution. 

Robustness index: Although we assume two stations are typically similar in their 

functionality, their importance is not similar. An RWIS station located in a crash-

vulnerable area, such as a downtown area, has much more importance than an RWIS station 

in a remote location. If a sensor station downtown fails, there is major risk to RWIS 

functionality. Thus, another constraint is introduced to ensure a minimum system reliability 

so that the failure of one ESS is not going to affect the functionality of the overall RWIS. 

Robustness index is defined as the ratio of an ESS system’s total utility under the failure 

of one ESS to the combined utility of all stations.  

 
𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 (𝑅𝐼) =  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝑛−1) 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦
=

∑ ∑ 𝐵−𝑖   𝑚𝑛𝑚,𝑛𝑖

𝑁∗ ∑ 𝐵𝑚𝑛𝑚,𝑛
 

(11) 

Where, 𝐵−𝑖   𝑚𝑛 is the utility/benefit of a cell (m,n) assuming the ith  ESS is not working 

The robustness index represents the reliability of the RWIS in case of the failure of one 

ESS. A higher robustness index requires RWIS stations to be closely spaced. The coverage 

and robustness index can be altered to achieve the desired optimal location configuration 

for a fixed number of RWIS stations. 

Location constraint: There may be limitations for station locations due to geometry, 

existing infrastructure, or required right-of-way, etc. A cell is defined as a candidate cell if 

there is any road segment where DOTs have the available right-of-way and an ESS can be 

set up.  
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3.2 Problem Formulation  

 Our objective is to maximize overall benefits derived from an RWIS per unit cost 

over the planning horizon. Additionally, coverage index and robustness index are bounded 

by [𝛼1 , 𝛼2 ] and [𝛽1 , 𝛽2 ] respectively. The proposed optimization formulation can be 

written as:  

 
𝑍 =  𝑚𝑎𝑥    

∑ 𝐵𝑚𝑛𝑚,𝑛

𝐶
 

(12) 

𝑠. 𝑡 ∑ 𝑋𝑚𝑛

𝑚,𝑛

= 𝑁 

𝐵𝑚𝑛 =  𝐸𝑚′𝑛′ ∗  𝜃𝑚𝑛 ∗ (1 −
𝑑𝑚𝑛

𝑟𝑎𝑛𝑔𝑒
) 

𝐶 = (𝑁 ∗  𝐹𝐶 +  ∑ 𝐷𝑖𝑘 ∗ 𝑀𝐶 ∗ 𝑃 )/𝑃

𝑖

 

 

𝛼1 ≤  
∑ (1 −

𝑑𝑚𝑛

𝑟𝑎𝑛𝑔𝑒𝑚,𝑛

𝑍
 ≤  𝛼2  

(13) 

 
𝛽1 ≤  

∑ 𝐵−𝑖   𝑚𝑛𝑚,𝑛

𝐵𝑚𝑛
≤  𝛽2   ∀ 𝑖 ∈ 𝑎𝑙𝑙 𝑠𝑒𝑛𝑠𝑜𝑟′𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

 

(14) 

Where, 𝑋𝑚𝑛 = { 1       𝑖𝑓 𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑐𝑒𝑙𝑙(𝑚, 𝑛)
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             

 

 

𝑑𝑚𝑛 is distance from cell(𝑚, 𝑛) to the nearest ESS station 

𝐷𝑖𝑘 𝑖s the minimum distance from ESS station(𝑖) to ITS facility(𝑘) 

𝛼1 , 𝛼2 are lower and upper limits for coverage index 

𝛽1 , 𝛽2 are lower and upper limits for robustness index 

𝑍′ is the maximum spatial coverage provided by 𝑁 ESS 
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𝑍′ =  𝑚𝑎𝑥   ∑ 𝐶𝑚𝑛

𝑚,𝑛

  

𝑠. 𝑡 ∑ 𝑋𝑚𝑛

𝑚,𝑛

= 𝑁 

𝐶𝑚𝑛 = 𝑓(𝑑𝑚𝑛) 

3.3 Solution Procedure 

As the number of stations increases, both benefit and cost increases. When there 

are large number of stations in the RWIS, their range will start to overlap. Thus, after a 

certain number of stations, the cost required to deploy an additional station will become 

more significant than the benefit derived from it. Identifying the point at which cost 

outweighs benefit will lead to an optimal number of stations. The solution approach 

consists of three major stages. The first stage is transforming crash data and weather data 

into the crash vulnerability rating of smaller cells of the region. The second stage is solving 

the optimization problem using a sequential algorithm to determine the desired number of 

stations to be deployed. The third stage is solving the complete optimization formulation 

to find the global optimal solution under coverage and reliability constraints. This section 

details the method used to achieve each of these three objectives. A flow chart for the 

complete methodology is shown in Figure 7. 
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Figure 7. Flow Diagram of Conceptual Model to Find Optimal ESS Locations 

 During the first stage, input data are combined to calculate the equivalent crash rate 

of each cell. Based on good and adverse weather crash patterns, the median vulnerability 

of cells is calculated. Instructions for data processing procedure are provided below. 

Crash data Average annual daily 

traffic (AADT) 
Weather data 

Cell vulnerability 

Initial optimization formulation 
Cell 

effectiveness 

Location 

characteristics like 

terrain 

Right-of-way 

Coverage 

index 

Robustness 

index 

Heuristic approach 

Number of stations 

Global optimal station location 

Location representation on GIS network 
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1) Statewide crash data for Texas is available through TxDOT’s Crash Records 

Information System (CRIS) database. Use Excel Visual Basic for Applications (VBA) 

to extract data for required counties and/or cities within the region (Appendix A).  

2) Weather data is available through the NWS Forecast Office in .txt format. Import .txt 

file into Excel for initial data cleanup.  

3) Import crash data into MATLAB to separate good and adverse weather crashes. Import 

weather data into MATLAB to extract good and adverse weather days.  

4) Divide study area into cells of equal length and width. Determine crash count of various 

cells using the coordinates of crash locations. 

5) CRIS data also contains information on AADT at various crash locations. Other data 

sources such as TxDOT’s Project Management Information System can provide AADT 

information. Impute for missing AADT data as described in Section 3.2. Calculate cell-

averaged AADT as the weighted sum of freeway, arterial roads, and minor road AADT, 

where the weights are calculated according to total length of different types of roads.  

6) Calculate equivalent crash rate for both good and adverse weather. Calculate 

vulnerability of each cell over the years. 

7) Calculate median vulnerability of each cell in the study area. 

 During the second stage, the optimization formulation without any coverage, 

robustness, and number of stations constraints has been solved using a sequential algorithm 

to identify the desired number of stations. Cell vulnerability produces an irregular pattern 

over space and usually the objective function turns out to be non-convex. Several heuristic 

approaches—such as Genetic Algorithm, Simulated Annealing, Tabu search, etc.—have 

been developed in recent years to solve non-convex problems to obtain global optimal 

solutions. However, solving the ESS location problem formulation with heuristic 

approaches can be computationally challenging. A sequential algorithm gives approximate 

information on the number of stations that would be required to achieve a given level 

coverage and reliability. It is important to note that the solution of a sequential algorithm 

does not depend on the total number of stations to be deployed—i.e., whether we are 

looking to deploy 50 stations or 100 stations, the location of the first 10 stations would be 
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the same in both cases. Exploiting this fact, we can set the initial number of stations to be 

unrealistically high, say (N=500). The sequential algorithm can be summarized as: 

Initialize: Set i = 1; find cells (a,b) to maximize objective function Z. 

Step 1: Set i = i +1, and set new station to first feasible cell. Recalculate value of 

objective function. Set Z = value of objective function. 

Step 2: For each candidate cell (m,n) with no station, put ith station in cell (m,n). 

Step 2.1: If any constraints are not satisfied, go to Step 2.3. 

Step 2.2: Recalculate objective function. If value of objective function > Z, then 

assign ith station to current cell (m,n). 

Step 2.3: Go to next cell. 

Step 3: If  i < N, go to Step 1. 

 A graph of the marginal benefit-cost ratio versus the number of stations is obtained. 

The desired number of stations can be decided by policymakers based on the additional 

benefits of a new station in an RWIS, budget constraints, and total RWIS system costs. 

After deciding the number of stations to be used, the optimization formulation is solved 

again using heuristic approaches for finding a global optimal solution. A genetic algorithm 

in MATLAB has been used to solve for the global optimal solution. Although the genetic 

algorithm has emerged as a powerful tool for finding the global optimal solution, its 

performance strongly depends on various factors like initial population, population size, 

mutation, crossover, tolerance level, and stopping criteria. The solution from a sequential 

algorithm can be a good guess for an initial feasible solution for faster convergence. To 

improve the optimality of the solution, an iterative procedure has been adopted to reach the 

final solution. 

Step 1: Set the solution from the sequential algorithm as the initial population for 

initialization of the genetic algorithm. Set population size as ten times the 

number of decision variables. 

Step 2: Set several separate and parallel cases with different mutation and crossover 

fraction values. 
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 For each candidate cell (m, n) with no station, put ith station in cell (m, n). 

Step 3: Set the initial population as the corresponding solution during the last run.  

 Find the best solution in each run. Store the solution and its corresponding 

objective value.  

Step 4: If the global optimal solution from various runs is repeated five or more 

times, then stop. Else, go to Step 1 for a maximum of 50 iterations. 

 Finding solutions via one run of the genetic algorithm can take several minutes. For 

a larger network and various input options, the complete optimization process can take 

several hours, depending on the problem’s complexity. The high computational time for a 

better solution can be justified, as ESS deployment is not run often—perhaps every 10 

years. Optimal sensor locations have been visualized using ArcGIS. 
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Chapter 4. Case Study: Austin District 

4.1 Study Area 

The TxDOT Austin District, shown in bold red outline in Figure 8, is spread over 

9,437 miles consisting of 11 counties: Bastrop, Blanco, Burnet, Caldwell, Gillespie, Hays, 

Lee, Llano, Mason, Travis, and Williamson (40, 41). The climate of the Austin District is 

humid subtropical with hot summers and relatively mild winters. Elevations within the 

region vary from 400 feet to just above 1,000 feet above sea level. Mild weather prevails 

during most of the winter, but temperatures fall below freezing on average 25 days a year. 

Strong mid-winter cold fronts blow through occasionally. 

  

Figure 8. The Austin District’s Location within Texas (41) 
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Austin, the Texas State capital, is the major city in the Austin District. It is located at the 

junction of the Colorado River and the Balcones Escarpment, separating the Texas Hill 

Country from the Backland Prairies to the east. I-35, US-290, SL-1, SH-29, and US-183 

are major arterial road for commuting within and outside of the District. These roads carry 

heavy traffic during morning and evening peak hours. TxDOT is the state agency 

responsible for the day-to-day operations and maintenance of the system.  Weather 

challenges for the transportation system in TxDOT’s Austin District are different from 

those in most parts of the United States. Table 2 compares the various factors responsible 

for weather-related crashes within the Austin District to those of the rest of the nation (29). 

Weather-related crash statistics within the Austin District have been obtained by analyzing 

crash data obtained from TxDOT’s CRIS. In most parts of the United States, ice on the 

roads is a major concern for state DOTs, whereas rain is the major concern for TxDOT. 

Snow is responsible for around 17% of total weather-related crashes nationwide whereas 

it accounts for only 1.7% in the Austin District. On an average, 74% of total weather-

related crashes on US roads occurred due to rain whereas rain caused 89% of crashes on 

roads in the Austin District. Reduced visibility on roads due to fog is the second major 

concern in the region, accounting for the remaining 3.9% of crashes. 

Table 2. Comparison between weather-related crashes (in percentage) in the Austin 

District and the nationwide average  

 
National 10 

years average 
Austin District 

 (2002–2012) 2010 2011 2012 2013 Average 

Rain 74 87.55 86.56 87.35 90.43 88.57 

Snow/Sleet 17 2.81 4.13 0.1 1.26 1.7 

Fog 3 2.05 2.97 5.12 3.44 3.93 

Overall 

weather-related 

crashes 

23 12.25 7.39 9.3 11.5 10.8 

 Traditionally RWISs are used to support winter maintenance activities, as they 

enable faster and more effective maintenance and operation activities. For the rest of the 
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year, RWIS stations serve as source of weather updates for travelers. In Texas, wet 

pavement conditions are a major concern during adverse weather. Nearly 85% of all 

crashes during adverse weather in Texas occurred in rainy conditions (cloudy weather is 

not considered an adverse weather condition) (42). RWIS information can be used by 

traffic operation managers to better control traffic on roads during adverse weather. Traffic 

managers may use road weather observations to modify signal timings, reduce speed limits, 

and close hazardous roads and bridges. The proposed methodology was applied to the 

Austin District area to achieve maximum reduction in crashes per unit cost of deploying 

RWIS stations. 

4.2 Data and Assumptions 

  Crash data used in this study was obtained from TxDOT’s CRIS database for 

crashes that occurred from 2010 to 2013. CRIS contains crash data submitted by law 

enforcement on form CR-3, Texas Peace Officer’s Crash Report. The crash data includes 

temporal and geographical information to allow CRIS to properly place the crash in time 

and space. This data is submitted to TxDOT and then forwarded to a private contractor for 

processing and encryption. The contractor then returns the encrypted data file to TxDOT 

for uploading to CRIS. However, not all information on the crash report can be extracted 

for use in CRIS; this includes diagrams, written statements, and other information provided 

by the investigating officers that is not written or typed in the pre-defined data fields. CRIS 

also contains several quantitative facts about accidents—such as weather condition, 

pavement condition, crash severity, and vehicle information—that can be used to study 

various causes of accidents. For locations missing the AADT figure, the AADT values 

were imputed using cell averages of AADT for the particular road type, as described in 

Section 3.2.  Weather data for years 2010 to 2013 was obtained from the NWS Forecast 

Office.  

Table 3 shows the distribution of weather crashes by weather conditions and year. 

The majority of crashes (88%) in the area occurred under good weather conditions. Such 

crashes can occur due to various factors, such as reduced pavement friction, hydroplaning, 
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location and degree of horizontal curves, number of lanes, lane width, presence of a paved 

shoulder, road design, traffic conditions, vehicle speeds, and driver’s judgement and 

behavior. Approximately 10% of overall crashes in the Austin District occurred during 

rain, although this figure fell to 6.7% in 2011, likely due to that year’s drought conditions. 

Snow accounted for a high percentage of weather-related crashes in 2010 and 2011. In 

2012, a disproportionally high percentage of crashes occurred, with 0.51% attributed to fog 

as compared to the typical average of 0.12%. 

Table 3. Summary statistics for Austin weather-related crashes from 2010 to 2013 (values 

are in percentage for grey cells) 

Year Unknown 
Clear/ 

cloudy 
Rain 

Sleet 

or hail 

or 

snow 

Fog Other 

Weather-

related 

crashes 

Total 

crashes 

2010 0.92 86.83 11.53 0.37 0.27 0.08 23,436 201,482 

2011 0.36 92.26 6.70 0.32 0.23 0.13 15,939 157,525 

2012 0.66 90.04 8.70 0.01 0.51 0.08 19,304 166,771 

2013 0.41 88.08 10.77 0.15 0.41 0.17 25,598 213,206 

Average 0.53 88.80 9.92 0.19 0.44 0.12 84,277 738,985 

   

MATLAB code (Appendix B) was used to read and process all input data and the 

results are shown using the GIS network in ArcGIS. The raw crash pattern of the Austin 

District shows the majority of crashes occurred on major highways and downtown (Figure 

9). This crash data is distributed over a 5-mile x 5-mile grid. Cell-based representation can 

also help us to visualize hot spots for crashes in the region and smooth network level 

details. This simplifies the crash pattern representation and solution approach to find 

optimal sensor locations. 
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Figure 9. Spatial Distribution of All Crashes and the Cell-Based Representation in 2012 

within the Austin District 

  Due to unavailability of detailed data, the following assumptions were made for 

this study within the context of the proposed methodology. Rainfall of 0.25 inch 

corresponds to either a light rain for 2–3 hours, a moderate rain for 30–60 minutes, or a 

heavy rain for 15 minutes, forming many puddles that do not disappear easily. Rainfall of 

0.5 inch corresponds to either a moderate rain for 1–2 hours, or a heavy rain for 30–45 
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minutes, resulting in deep standing water for long periods of time. A day has been defined 

as an adverse weather day if there is any incident of sleet, snow, fog, or overall rainfall 

greater than 0.3 inch per day. There are two major weather stations located in the region: 

Austin-Bergstrom International Airport and Austin Camp Mabry. Austin-Bergstrom 

International Airport weather station data has been used to define good and adverse weather 

days. Daily weather condition data for 5 miles by 5 miles granularity over four years were 

not available. Good and adverse weather conditions were assumed to be same over the 

entire region for a single day. 

 Drivers make fewer trips during adverse weather than during good weather. 

Reduction in traffic count on roads during adverse weather depends on various factors, 

including weekday or weekend travel (43). During adverse weather, vehicle count is 

assumed to be reduced by 12%. An ESS is assumed to have a range of 20 miles with 

linearly decreasing effectiveness (18). The capital cost of deploying one station is $50,000 

and annual maintenance cost is $500 per unit mile per year. Primary analysis has been done 

for a planning horizon of five years. For demonstration, six major ITS locations or ESS 

maintenance facilities are assumed to located across the study area, as shown in Figure 10. 

Due to limitations of data and time availability for this study, the effectiveness of all cells 

is assumed to be uniform (i.e., Emn = 1 for every cell (m,n)). 
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Figure 10. Assumed Cells with ITS Facilities 

4.3 Weather-Sensitive Crash Pattern  

As shown in Table 4, on an average day, more crashes occur during good weather 

conditions than in adverse weather conditions. However, traffic count on roads during 

adverse weather is less than the traffic count on an average day. A quantile-quantile (QQ) 

plot (Figure 11) between equivalent adverse weather crashes and the equivalent good 

weather crash rate for 2013 suggests that the adverse weather crash rate is slightly higher 

than the good weather crash rate. This shows that under similar traffic conditions on a good 

day and on an adverse day, there is a greater chance of accidents during adverse weather 

conditions. Some cells, especially cells on city arterial roads, are found to be highly 

vulnerable even with low weather-related crashes and some cells with high weather-related 

crashes are less vulnerable.  Thus, weather-related crash count may or may not be a good 

indicator of crashes occurring due to change in weather conditions. The good weather crash 

pattern is distinguished from the adverse weather crash pattern by defining vulnerability 

for each cell, as described in Section 3.1. 
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Figure 11. Comparison of Equivalent Crash Rates in Good and Adverse Weather based on 

2013 Data 

(a) Comparison of histograms (blue: good weather; yellow: adverse weather) 

(b) Quantile-Quantile plot  
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 Figure 12 shows the crash pattern during good weather over time. For comparison, 

the range for the top 2% of crashes in adverse weather is used as the high crash rate range, 

followed by medium risk for the next 20% of crashes. Good weather equivalent crash rates 

are more consistent over the year and are concentrated along major highways and 

downtown areas. However, Figure 13 shows that adverse weather equivalent crash rates 

within a cell vary over the year. Thus, adverse weather crashes are more unpredictable in 

both time and space. Good weather crashes occur more predictably due to several factors, 

like traffic, road design, etc. In contrast, adverse weather crashes have a random pattern 

over the year and are less predictable in nature. Deploying an RWIS in the area can assist 

traffic operation managers and drivers to make informed decisions.  
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Figure 12. Austin District Equivalent Crash Rate in Good Weather from 2010 to 2013 

Equivalent Crash Rate 

(crashes per 100,00 vehicles) 
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Figure 13. Austin District Equivalent Crash Rate in Adverse Weather from 2010 to 2013 

Equivalent Crash Rate 

(crashes per 100,00 vehicles) 
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The vulnerability of each cell was calculated according to Equation 3 using 

MATLAB code (Appendix C). To account for large variations in crash patterns over the 

year, median cell vulnerability over four years was obtained and is shown in Figure 14. 

Median vulnerability was input in the model for further analysis. The crash pattern varies 

significantly from 2010 to 2013. To account for outliers in data over four years, the median 

vulnerability for each cell was used. All cells were defined as candidate cells with a uniform 

effectiveness of one. 

 

Figure 14. Median Vulnerability (in crashes per 100,000 vehicles) of Cells within the Austin 

District 

4.4 Recommended ESS Location 

 First, a sequential algorithm was solved to optimize total utility of the RWIS 

(Equation 12) without any station, coverage, and reliability constraints (Appendix D). The 

value of objective function, coverage index, and reliability index has been calculated as 

described in Section 3.2. As Figure 15 illustrates, the graph of the benefit versus number 
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of stations is increasing. This is expected, as with more stations in the system, we can have 

more information about weather conditions. More stations can help provide detailed 

information throughout the region and can help improve safety and mobility on our road 

networks. However, as we add more and more stations, their range would start to overlap, 

resulting in less marginal benefit. However, the total cost of deploying more stations is also 

increasing, as both fixed initial cost and maintenance cost over the planning horizon are 

increasing (Figure 16). The value of our objective, which is benefit-cost ratio, is decreasing 

with the number of stations (Figure 17). Thus, the cost of deploying a new station in the 

system is increasing faster than the benefit received from it.  

 

Figure 15. Variation of Benefit with Number of Stations 
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Figure 16. Variation of Cost with Number of Stations 

 

Figure 17. Benefit-Cost Ratio Variation with Number of Stations 

Figure 18 shows a marginal change in the benefit-cost ratio for new stations. 

Policymakers can choose the number of stations based on their budget and the amount of 
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benefit per dollar they are looking to achieve. The plot of marginal benefit-cost ratio versus 

station number suggests either 4 or 10 stations would give a good overall utility for an 

RWIS based on money spent. Based on budget constraints, the final number of stations can 

be obtained. If budget is not a constraint, the number of stations corresponding to the last 

minimum point can be chosen as the number of stations to be deployed.  In this case study, 

we assume that budget is not a concern; hence, 10 stations would be deployed in the region. 

 

Figure 18. Marginal Benefit-Cost Ratio Variation with Station Number 

Plots of the coverage index and robustness index are obtained using a sequential 

algorithm, as shown in Figure 19 and Figure 20 respectively. As the number of stations is 

increasing, their coverage and robustness is also increasing. However, marginal coverage 

and robustness index decreases for each new station. This graph can be used by decision-

makers to define coverage and robustness level or to choose the appropriate number of 

stations to achieve the desired coverage and robustness. Based on the initial graph and 

number of stations, we can decide reasonable bounds on coverage index and robustness 

index. For further calculation, (𝛼1 = 0.3, 𝛼2 = 1;  𝛽1 = 0.5, 𝛽2 = 1) has been used as the 

bound for the coverage index and robustness index. 
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Figure 19. Variation of Coverage Index with Number of Stations 

  

 

Figure 20. Variation of Robustness Index with Number of Stations 
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After defining vulnerability and deciding on the desired number of stations to be 

deployed, the complete optimization problem defined by Equation 12 with all constraints 

has been solved using a genetic algorithm in MATLAB, as described in Section 3.3 

(Appendix E). Figure 21 shows the location of ten ESSs in the Austin District. An RWIS 

consisting of ten ESSs would cover 94% of total crashes occurring in the region. 

Recalculation for coverage index and robustness index for new locations suggests that an 

RWIS will have spatial coverage of 48% and on average remain 92% reliable should one 

ESS fail.  

 

Figure 21. Optimal ESS Locations 

4.5 Sensitivity Analysis 

 There were some assumptions made on the values of parameters during ESS 

location problem formulation and its implementation. Using the proposed methodology we 

can predict the effects of change in various parameters on the optimal solution of number 

of stations and their locations. The effects of change in some of the important parameters 

are described below: 
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1) An increase in capital cost or reduction in maintenance cost will increase the 

significance of the maintenance cost over capital cost for the planning horizon. This 

will result in optimal sensor locations shifting closer to the nearest ITS facility. 

Similarly, increasing the planning horizon, say from 5 years to 10 years, will shift 

optimal sensor locations closer to ITS facilities. For a hypothetical planning horizon of 

50 years, six of the 10 sensor locations are located exactly at six ITS facilities (Figure 

22). In this case, maintenance cost over 50 years is highly significant compared to the 

initial capital cost. 

 

 

Figure 22. Optimal Station Location for Planning Horizon of 50 Years 

2) The range of each ESS is assumed to be 20 miles (50% coverage for 10 miles). If the 

range of an ESS is decreased (say for a local ESS), more ESSs will be required for the 

same weather-sensitive crash and spatial coverage. The ESSs will be closer to high 

weather-sensitive crash areas like downtown.  

3) Virtual nodes formation under data sharing environment: As the distance between 

two ESSs is large, it is reasonable to assume that information provided by two ESSs at 

a location are independent and the station closest to the location has more accurate road 

and weather information. However, information provided by two ESSs can be 
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combined to obtain approximate information on road and weather conditions at 

locations between them. In this scenario, Equation 4 has to be modified to incorporate 

the effects of more than one station. Stations in a data-sharing environment are 

expected to be located farther apart than stations considered under the current 

assumption. Fewer ESSs will be required in data-sharing enviornment for the same 

weather-sensitive crash and spatial coverage. 

4.6 Discussion 

Most of the crashes in the Austin District occurred either along the major highways 

or in the downtown area. Under the assumptions made in Section 4.2, an adverse weather 

day has been found to have a greater crash rate than a good weather day. Good weather 

crashes in the Austin District were more predictable over the year than adverse weather 

crashes. Good weather crashes are mostly those that happen in everyday life due to poor 

roadway design or other reasons. A crash occurring in adverse weather may or may not 

have happened due to the weather change. The QQ plot between equivalent good weather 

crashes and adverse weather crashes shows that the vulnerability of a location for a crash 

during adverse conditions is different than for normal weather-related crash counts. It is an 

important aspect for RWISs, as these are the crashes that occur due to changes in weather 

conditions—and that can actually be reduced using an RWIS.  

The benefit-cost ratio decreases with an increase in the number of stations. So 

marginal change in the benefit-cost ratio with an additional station can be used to decide 

how much benefit an agency would get if they spent more money for an additional ESS. 

The results show that ten ESSs would be a good choice to implement in the region and 

their global optimal locations have been found via the proposed methodology. An RWIS 

consisting of ten ESSs would cover 94.25% of total crashes occurring in the region. 

Meanwhile, the RWIS would have spatial coverage of 48%. On average, the system would 

be 92% reliable should one ESS fail.  
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Chapter 5. Conclusion and Recommendation 

 An ESS is the core component of an RWIS in road weather response management. 

Siting and instrumenting ESSs requires consideration of safety, operations, logistics, 

maintenance, construction, and environmental factors. A comprehensive optimization 

methodology has been proposed that seeks the optimal ESS locations at the regional level, 

aiming to simplify the decision-making in RWIS planning. It consists of discretizing an 

urban region into cells, identifying the weather-sensitive crash pattern, and then 

maximizing the total utility of monitoring. The proposed approach is robust and portable 

for different criteria for different agencies. In addition, the proposed approach is suitable 

for tackling large-scale problems, e.g., those involving thousands of lane miles. For such 

problems, approaches based on detailed road-segment-level crash modeling and 

predictions are simply not practical due to the excessive modeling and calibration efforts 

needed. Lastly, since a number of DOTs (e.g., Alberta DOT) have already deployed hotspot 

analysis tools in ESS siting, our approach will be effectively integrated into existing road 

weather decision-support systems.  

Our case study with the Austin District area yielded several insights. First, adverse 

weather is a significant factor influencing crash rate. Second, the weather-sensitive location 

identification results show that vulnerable locations are spatially distributed, rather than 

concentrated, and the vulnerable location distribution is different from the weather-related 

crash distribution. This finding implies support for the significance of the ‘weather-

sensitivity’ notion. In the end, based on four-year median weather-sensitivity analysis, ESS 

locations were obtained that provide very good coverage of crash-prone areas as well as 

the study area as a whole, which demonstrates the usefulness of the proposed approach. It 

also ensures minimum reliability of RWIS in case of failure of any ESS. 

This project laid the basic framework for further analysis that can be done to find 

better locations for ESSs to form an RWIS on a regional level. Further improvements in 

the proposed problem formulation and solution can be made to improve the usage of 

RWISs. This methodology has limitations for identifying ESS locations for local coverage, 
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such as a bridge ice detection system. Selection of such sites can be best accomplished by 

a team of local road and weather experts. Due to the lack of available data on spatial terrain, 

power availability, and ITS facilities, certain assumptions about weather conditions were 

made for the study, as Section 4.2 outlines.  

Due to the lack of any established research, another important assumption made in 

this study was that an ESS would have a linearly decreasing impact on reducing the crash 

pattern in its neighborhood. More research on the impact of RWIS on crash patterns is 

needed to fully understand how ESSs help to improve safety and mobility. First, evaluating 

the value of ESS in the broader context of traveler information systems is a necessary step. 

This will require detailed considerations of driver perception and behavioral changes. 

Second, considering the operations cost, an agency partnership and information sharing 

will be essential. Finally, fusing data from alternative sources (e.g., NOAA weather record 

and Google traffic data) will help to compensate for the missing data issue encountered in 

this study. 
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Appendices 

Appendix A. EXCEL VBA CODE FOR AUSTIN DISTRICT DATA PROCESSING 

Sub SelectedCounties() 

Dim myarray() As Variant, path As String, curdir As String 

Dim rng As Range 

myarray = Array("11", "16", "27", "28", "86", "105", "144", "150", "157", "227", "246") 

curdir = ActiveWorkbook.path & "\" 

Dim projest As Workbook 

For i = 1 To 5 

path = curdir & 2009 + i & "_allDistrict" 

Set projest = Application.Workbooks.Open(path) 

Range("a1:g1").Select 

Selection.AutoFilter Field:=3, Criteria1:=myarray, Operator:=xlFilterValues 

Set rng = Application.Intersect(ActiveSheet.UsedRange, Range("A1:G700000")) 

rng.SpecialCells(xlCellTypeVisible).Select 

Selection.Copy 

Workbooks.Add 

ActiveWorkbook.Worksheets(1).Paste 

ActiveWorkbook.SaveAs curdir & 2007 + i & ".csv" 

ActiveWorkbook.Close SaveChanges = True 

projest.Close SaveChanges = False 

Next i 

End Sub 
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Appendix B. MATLAB CODE FOR COMPUTING CRASH RATE IN CELL 

ncol = 7; 

% temp declaring good and adverse crashes 

goodcrash2010= zeros(1,ncol);goodcrash2011= zeros(1,ncol);goodcrash2012= 

zeros(1,ncol);goodcrash2013= zeros(1,ncol); 

badcrash2010= zeros(1,ncol);badcrash2011= zeros(1,ncol);badcrash2012= 

zeros(1,ncol);badcrash2013= zeros(1,ncol); 

  

crash2010 = xlsread('./Austin District crashes/2010.xlsx'); 

crash2011 = xlsread('./Austin District crashes/2011.xlsx'); 

crash2012 = xlsread('./Austin District crashes/2012.xlsx'); 

crash2013 = xlsread('./Austin District crashes/2013.xlsx'); 

total_years = 4; 

% Rwis crash data processing 

total_crash = {crash2010,crash2011,crash2012,crash2013}; 

good_crash = {goodcrash2010,goodcrash2011,goodcrash2012,goodcrash2013}; 

bad_crash = {badcrash2010,badcrash2011,badcrash2012,badcrash2013}; 

  

tname = ['2010'; '2011'; '2012';'2013';'2010'; '2011'; '2012';'2013']; 

name = cellstr(tname);ndays = zeros(1,total_years); 

bad = zeros(1,total_years); 

  

for i= 1:total_years 

    k = 1;kk=1; 

    rows = size(total_crash{i}); 

    nrow = rows(1); 

    curyear = total_crash{i}; 

    for j = 1:nrow 
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        if curyear(j,2) == 1 || curyear(j,2) == 11 || curyear(j,2) == 12 

            good_crash{i}(k,:) = curyear(j,:); 

            k = k+1; 

        else 

            bad_crash{i}(kk,:) = curyear(j,:); 

            kk = kk+1; 

        end 

    end 

end 

  

% define Origin 

% X = Long Y= Lat % long(.9-.64)= 15.531 miles  %lat (.5-.225) = 

% 19.011 miles 

% Per Long = 59.7346 miles && Per Lat = 69.1309 Miles 

perlat = 69.1309; perlong = 59.7346; 

origin_long = -99.5; 

origin_lat = 29.70; 

oppCorner_long = -96.7; 

oppCorner_lat= 31; 

  

%define width and height of grid in Miles 

gridsize = 5; 

width_long = gridsize/perlat; 

width_lat = gridsize/perlong; 

% number of cells along x-axis and y-axis 

ncells_long = round((oppCorner_long - origin_long)/width_long); 

ncells_lat = round((oppCorner_lat - origin_lat)/width_lat); 

a= zeros(ncells_long,ncells_lat); 



  

51 

 

AADT_type ={a,a,a,a,a,a,a;a,a,a,a,a,a,a;a,a,a,a,a,a,a;a,a,a,a,a,a,a}; 

AADT_type_count ={a,a,a,a,a,a,a;a,a,a,a,a,a,a;a,a,a,a,a,a,a;a,a,a,a,a,a,a}; 

for n = 1:total_years 

    current_crash = total_crash{n}; 

    temp1 = size(current_crash); 

    nrow = temp1(1); 

    current_crash = sortrows(current_crash,6); 

    crash_count = zeros(ncells_long,ncells_lat); 

    k = 1; 

    active =0; 

     

    for i=1:nrow 

         

        if (origin_long + (k-1) * width_long <= current_crash(i,6) &&  current_crash(i,6) < 

origin_long + k * width_long) 

            active =1; 

             

            for j = 1:ncells_lat 

                if(origin_lat + (j-1) * width_lat <= current_crash(i,5) && current_crash(i,5) < 

origin_lat + (j) * width_lat ); 

                    if isnan(current_crash(i,7)) 

                    else 

                        AADT_type{n,current_crash(i,4)}(k,j)= 

AADT_type{n,current_crash(i,4)}(k,j) + current_crash(i,7); 

                        AADT_type_count{n,current_crash(i,4)}(k,j)= 

AADT_type_count{n,current_crash(i,4)}(k,j) + 1; 

                    end 

                     

                end 
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            end 

        else 

            if active == 1 && k < ncells_long 

                k = k+1; 

            end 

        end 

    end 

     

end 

%} 

AADT_avg ={a,a,a,a,a,a,a;a,a,a,a,a,a,a;a,a,a,a,a,a,a;a,a,a,a,a,a,a}; 

for i = 1:4 

    for j = 1:7 

        for k =1:ncells_long 

            for l = 1:ncells_lat 

                AADT_avg{i,j}(k,l) = AADT_type{i,j}(k,l)/AADT_type_count{i,j}(k,l); 

            end 

        end 

    end 

end 

%%% for good weather crashes 

for n = 1:total_years *2 

    % current_crash = total_crash{n}; 

    if n <= total_years 

        current_crash = good_crash{n}; 

        n1=n; 

    else 

        current_crash = bad_crash{n-total_years}; 
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        n1= n- total_years; 

    end 

     

    temp1 = size(current_crash); 

    nrow = temp1(1); 

    %display(nrow) 

    % Sort based on longitude for a faster algorithm 

    current_crash = sortrows(current_crash,6); 

    crash_count = zeros(ncells_long,ncells_lat); 

    k = 1; 

    % active =0; 

    for i=1:nrow 

         

        if (origin_long + (k-1) * width_long <= current_crash(i,6) &&  current_crash(i,6) < 

origin_long + k * width_long) 

            for j = 1:ncells_lat 

                if(origin_lat + (j-1) * width_lat <= current_crash(i,5) && current_crash(i,5) < 

origin_lat + (j) * width_lat ); 

                     

                    if current_crash(i,4) == 1 

                        if ~isnan(AADT_avg{n1,1}(k,j)) 

                            crash_count(k,j) = crash_count(k,j) + 100000/ AADT_avg{n1,1}(k,j); 

                        else 

                            crash_count(k,j) = crash_count(k,j) + 100000/135000; 

                        end 

                    elseif current_crash(i,4) ==2 

                         

                        if ~isnan(AADT_avg{n1,2}(k,j)) 

                            crash_count(k,j) = crash_count(k,j) + 100000/ AADT_avg{n1,2}(k,j); 
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                        else 

                            crash_count(k,j) = crash_count(k,j) + 100000/47000; 

                        end 

                    else 

                        if ~isnan(AADT_avg{n1,3}(k,j)) 

                            crash_count(k,j) = crash_count(k,j) + 100000/ AADT_avg{n1,3}(k,j); 

                        else 

                            crash_count(k,j) = crash_count(k,j) + 100000/21500; 

                        end 

                    end 

                    break; 

                end 

            end 

             

        else 

            if k < ncells_long 

                k = k+1; 

            end 

        end 

    end 

     

    if n ==1 

        goodcrashcount2010 = crash_count; 

    elseif n==2 

        goodcrashcount2011 = crash_count; 

    elseif n==3 

        goodcrashcount2012 = crash_count; 

    elseif n==4 
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        goodcrashcount2013 = crash_count; 

    % Bad crashcount 

    elseif n==5 

        badcrashcount2010 = crash_count; 

    elseif n==6 

        badcrashcount2011 = crash_count; 

    elseif n==7 

        badcrashcount2012 = crash_count; 

    else 

        badcrashcount2013 = crash_count; 

    end 

end 

  



  

56 

 

Appendix C. MATLAB CODE FOR CALCULATING VULNERABILITY 

Ngoodcrashcount2010 = goodcrashcount2010 * 365 / good(1,1); 

Ngoodcrashcount2011 = goodcrashcount2011 * 365 / good(1,2); 

Ngoodcrashcount2012 = goodcrashcount2012 * 365 / good(1,3); 

Ngoodcrashcount2013 = goodcrashcount2013 * 365 / good(1,4); 

  

Nbadcrashcount2010 = badcrashcount2010 * 365 / bad(1,1); 

Nbadcrashcount2011 = badcrashcount2011 * 365 / bad(1,2); 

Nbadcrashcount2012 = badcrashcount2012 * 365 / bad(1,3); 

Nbadcrashcount2013 = badcrashcount2013 * 365 / bad(1,4); 

  

Ngood_crashcount = 

{Ngoodcrashcount2010,Ngoodcrashcount2011,Ngoodcrashcount2013}; 

Nbad_crashcount = 

{Nbadcrashcount2010,Nbadcrashcount2011,Nbadcrashcount2012,Nbadcrashcount2013}; 

Nyears = total_years; 

for k = 1:Nyears 

    diff_crash1{k} = (Nbad_crashcount{k}- Ngood_crashcount{k}); 

end 

crash_mod = zeros(ncells_long,ncells_lat); 

crash_median = zeros(ncells_long,ncells_lat); 

for i = 1: ncells_long 

    for j = 1:ncells_lat 

        temp5=0; 

        temp4 = zeros(Nyears,1); 

        for k = 1: Nyears 

            temp5 = temp5 + (diff_crash1{k}(i,j)*diff_crash1{k}(i,j)); 

            temp4(k) = diff_crash1{k}(i,j); 
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        end 

        crash_mod(i,j) = sqrt(temp5);  

        temp4 = sort(temp4);         

        if rem((Nyears),2) == 0 

            crash_median(i,j) = temp4((Nyears)/2)+ temp4((Nyears)/2+1); 

        else 

            crash_median(i,j)= temp4(round((Nyears)/2)); 

        end 

    end 

end 

name = cellstr(tname); 

cmin = min([min(min(Ngood_crashcount{1})) min(min(Ngood_crashcount{2})) 

min(min(Ngood_crashcount{3})) min(min(Ngood_crashcount{4})) ]); 

cmax = max([max(max(Ngood_crashcount{1})) max(max(Ngood_crashcount{2})) 

max(max(Ngood_crashcount{3})) max(max(Ngood_crashcount{4})) ]); 

cmin1 = min([min(min(Nbad_crashcount{1})) min(min(Nbad_crashcount{2})) 

min(min(Nbad_crashcount{3})) min(min(Nbad_crashcount{4})) ]); 

cmax1 = max([max(max(Nbad_crashcount{1})) max(max(Nbad_crashcount{2})) 

max(max(Nbad_crashcount{3})) max(max(Nbad_crashcount{4})) ]); 

for n = 1:Nyears *2 

% figure(); 

    if n <= Nyears    

        h = surf(Ngood_crashcount{n}); colorbar; caxis([cmin cmax]);axis tight; axis equal; 

    else 

         h = surf(Nbad_crashcount{n-Nyears}); colorbar;caxis ([cmin1 cmax1]);axis tight; 

axis equal; 

    end 

view([-89 -90]); 

title({name{n};''}); 

if n <= Nyears 
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saveas(h,sprintf('Ngoodcrash%d.jpg', n)); 

xlswrite('myFile.xlsx',Ngood_crashcount{n},sprintf('sheet%d', n)); 

else 

    nn = n - Nyears; 

    saveas(h,sprintf('NAdversecrash%d.jpg', nn)); 

    xlswrite('myFile.xlsx',Nbad_crashcount{n-Nyears},sprintf('sheet%d', n)); 

end 

end 

cmin = min([min(min(diff_crash1{2})) min(min(diff_crash1{3})) 

min(min(diff_crash1{4})) min(min(diff_crash1{5}))]); 

cmax = max([max(max(diff_crash1{1})) max(max(diff_crash1{2})) 

max(max(diff_crash1{3})) max(max(diff_crash1{4})) max(max(diff_crash1{5}))]); 

  

for n = 1:Nyears 

% figure(); 

h = surf(diff_crash1{n}); colorbar;caxis([cmin cmax]);axis tight; axis equal;view([-89 -

90]); title({name{n};''}); 

saveas(h,sprintf('Vulnerability%d.jpg', n)); 

end 

  

h = surf(crash_mod); colorbar; view([-89 -90]);axis tight; axis equal; 

title({'Vulnerability point distance from origin';''}); 

saveas(h,sprintf('crash_mod.jpg')); 

xlswrite('myFile.xlsx',crash_mod,sprintf('sheet%d', n+1)); 

  

h = surf(crash_median); colorbar; view([-89 -90]);axis tight; axis equal; 

title({'Median Vulnerability over years ';''}); 

saveas(h,sprintf('crash_median.jpg')); 

xlswrite('myFile.xlsx',crash_median,sprintf('sheet%d', n+2));  
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Appendix D. MATLAB CODE FOR FINDING OPTIMAL NUMBER OF 

STATIONS 

% BENEFIT FUNCTION 

% Assuming Linear Range Function 

% Location_Rwis is a n * 2 vaectors where n is number of station deployed, 

% location is in the terms of cell number 

function B = Benefit_rwis(Location_Rwis) 

% Range of RWIS 

global crash_median ncells_long ncells_lat gridsize; 

range1 = 20/gridsize; 

nRwis = size(Location_Rwis,1); 

B = 0; 

Eff = ones(ncells_long,ncells_lat); 

if nRwis ~= 0  

  

dist = range1 * ones(ncells_long,ncells_lat); 

for  i= 1 : ncells_long 

    for j = 1:ncells_lat 

        for k = 1 : nRwis 

            temp1 = sqrt((Location_Rwis(k,1)-i)^2 + (Location_Rwis(k,2)-j)^2); 

                       if temp1 < dist(i,j) 

                dist(i,j) = temp1; 

            end 

        end 

         

        if dist(i,j) < range1 

            B = B + EFF(i,j) * crash_median(i,j) * (1 - dist(i,j)/range1); 
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        end 

    end 

end  

end 

end 

 

 

% Cost function 

function C = Cost_rwis(Location_Rwis) 

% fixed cost on installing one Rwis 

% Maintaince cost per unit miles during one planninf Horizon 

  

global Location_ITS nITS ii gridsize; 

  

fixedcost = 50000; 

MC = 500*ii/gridsize; 

  

%C = 0; 

nRwis = size(Location_Rwis,1); 

if nRwis ~= 0 

C = nRwis * fixedcost; 

dist = ones(nRwis,1)*10000000; 

  

%display(nITS) 

for i = 1:nRwis 

    temp = 100000000000; 

    for j= 1:nITS 
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        temp = sqrt((Location_Rwis(i,1)-Location_ITS(j,1))^2+(Location_Rwis(i,2)-

Location_ITS(j,2))^2); 

        %display(temp); 

        if temp < dist(i) 

            dist(i) = temp; 

        end 

    end 

    %display(dist(i)); 

    C = C + MC * dist(i); 

    %display(C); 

end 

  

C = C / ii; 

%display(nRwis); 

end 

  

end 

 

% Coverage Index 

function coverageindex = Coverage_rwis(Location_Rwis) 

global ncells_long ncells_lat gridsize; 

nRwis = size(Location_Rwis,1); 

range2 = 30/gridsize; % expressed in terms of cells unit 

  

Cover = 0; 

if nRwis == 0  

else 

dist = range2 * ones(ncells_long,ncells_lat); 
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for  i= 1 : ncells_long 

    for j = 1:ncells_lat 

        temp1 = 0; 

        for k = 1 : nRwis 

            temp1 = sqrt((Location_Rwis(k,1)-i)^2 + (Location_Rwis(k,2)-j)^2); 

            if temp1 < dist(i,j) 

                dist(i,j) = temp1; 

            end 

        end 

        if dist(i,j) < range2 

            Cover = Cover +  (1 - dist(i,j)/range2); 

        end 

    end 

end 

coverageindex = Cover/(ncells_lat*ncells_long); 

end 

end 

 

% Robustness Index 

% Robustness of system 

%global nRwis crash_median ncells_long ncells_lat 

  

function RobustnessIndex = Robustness_total(Location_Rwis) 

  

nRwis = size(Location_Rwis,1); 

RobustnessIndex = 0; 

if nRwis == 1 

RobustnessIndex = 1; % in reality it should be zero 
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elseif nRwis ~= 0 

  

RobustnessIndex = 0; 

Original_Location = Location_Rwis; 

for i = 1:nRwis     

    Location_Rwis(i,:) = []; 

    RobustnessIndex = RobustnessIndex + 

Benefit_rwis(Location_Rwis)/Benefit_rwis(Original_Location); 

    Location_Rwis = Original_Location; 

end 

end 

  

RobustnessIndex = RobustnessIndex / nRwis; 

  

end 

 

% List of facilities here 

global nITS Location_ITS 

nITS = 6; 

  

Location_ITS = [ 

    7 5; 

    11 11; 

    10 6; 

    27 10; 

    28 6; 

    33 7; 

    ]; 



  

64 

 

 

% Sequential Algorithm for finding locations 

% Sequqntial Algorithm 

x = zeros(ncells_long, ncells_lat); 

alpha1 = 0; alpha2 = 1; % lower and upper bound on coverage 

beta1 = 0; beta2 = 1; % lower and upper bound on robustness 

  

  

Location = []; 

maxBenefit_rwis = ones(nRwis,1)*(-1000000); 

Location_sol = []; 

kk = 1; 

for k = 1 : nRwis 

%     if k > 5 

%         alpha1 = 0.01; alpha2 = 1; % lower and upper bound on coverage 

%         beta1 = 0.6; beta2 = 1; % lower and upper bound on robustness 

%     end 

        for i = 1:ncells_long 

            for j = 1:ncells_lat 

                temp = 0; 

                proceed1 = false; 

                Location(kk,:) = [i j]; 

                tempCoverage_rwisindex = Coverage_rwis(Location); 

                 

                if tempCoverage_rwisindex >= alpha1 && tempCoverage_rwisindex <= 

alpha2 

                    temprobustindex = Robustness_rwis(Location); 
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                    for p = 1:kk 

                        if temprobustindex(p)>= beta1 && temprobustindex(p) <= beta2 

                            proceed1 = true; 

                        end 

                    end 

                end 

                 

                if proceed1 == 1 

                     

                    if Cost_rwis(Location) ~= 0 

                        temp = Benefit_rwis(Location)/Cost_rwis(Location); 

                    end 

                    if maxBenefit_rwis(kk) < temp 

                        maxBenefit_rwis(kk) = temp; 

                        Location_sol(kk,:) = [i j]; 

                    end 

                end 

            end 

        end 

        if size(Location,1) ~= size(Location_sol,1) 

            Location(kk,:) = []; 

            %display(kk);        display('fail'); 

            break 

        else 

            %display(size(Location,1)); 

            %display(size(Location_sol,1)); 

            Location(kk,:) = Location_sol(kk,:); 

            kk = kk + 1; 
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        end 

end 

  

for k = 1:kk-1 

    x(Location_sol(k,1),Location_sol(k,2)) = 1; 

end 

%end 

  



  

67 

 

Appendix E. MATLAB GENETIC ALGORITHM CODE FOR OPTIMAL 

STATION LOCATION 

% Genetic Algorithm objective function in MATLAB is designed for minimization. 

Negative of our Benefit-cost ratio has been defined as objective function here 

function rwisvalue = rwis(x) 

global crash_median lambda ncells_long ncells_lat; 

dist1 = ones(ncells_long,ncells_lat)*100000000000000000000000000000000000; 

disttemp = ones(ncells_long,ncells_lat)*100000000000000000000000000000000000; 

rwisvalue = 0; 

Eff =1; 

for i = 1:ncells_long 

    for j = 1:ncells_lat 

        kk=1; 

            for k = ncells_long * ncells_lat 

               if x(k) ~=0 

                   lat1 = floor(k./ncells_long)+1; 

                   long1 = mod(k,ncells_long);     if long1 ==0 long1 = ncells_long; lat1 = lat1-

1; end 

                   disttemp(i,j) = sqrt((long1-i)*(long1-i) + (lat1-j)* (lat1-j)); 

                    if kk == 1 

                         dist1(i,j)= disttemp(i,j); 

                    else 

                           if disttemp(i,j) < dist1(i,j) 

                           dist1(i,j) = disttemp(i,j); 

                           end 

                    end 

                    kk = kk+1;                            

               end                 
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            end 

        rwisvalue = rwisvalue - crash_median(i,j) * Eff * crash_median(i,j) * (1 - 

dist(i,j)/range1); 

end 

end 

end 

%non linear constraints 

  

function [c,ceq] = NonLinearCons_rwis(x) 

global ncells_long ncells_lat 

  

alpha1 = 0.3; alpha2 = 1;  

beta1 = 0.5; beta2 = 1;  

temp = zeros(1,2); 

k =1; 

for i = 1 : ncells_long 

    for j = 1:ncells_lat 

        if x(i+(j-1)*ncells_long) == 1 

        temp(k,:) = [i j]; 

        k = k +1; 

        end 

    end 

end 

tempCoverage_rwisindex = Coverage_rwis(temp); 

temprobustindex = Robustness_rwis(temp); 

  

c = [alpha1 - tempCoverage_rwisindex; tempCoverage_rwisindex - alpha2; beta1 - 

temprobustindex; temprobustindex - beta2]; 

ceq = []; 
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end 

global crash_median lambda ncells_long ncells_lat; 

nvar = ncells_long * ncells_lat; 

lb= zeros(1,nvar); 

ub = ones (1,nvar); 

a= ones(1,nvar); b = 5; 

aa =[1:1:nvar]; 

lambda = 0.08; 

  

option = gaoptimset('InitialPopulation',x,CrossoverFraction, 0.8000,MutationFcn, 

{[@mutationgaussian]  [1]  [1]}); 

optimal_location = ga(@rwis, nvar,a,b,[],[],lb,ub,[],aa,@ NonLinearCons_rwis); 

optimal_location_temp = optimal_location; 

for i = 1:50   

option = gaoptimset('InitialPopulation',optimal_location,CrossoverFraction, 

0.8000,MutationFcn, {[@mutationgaussian]  [1]  [1]}); 

optimal_location = ga(@rwis, nvar,a,b,[],[],lb,ub,[],aa, NonLinearCons_rwis); 

if rwis(optimal_location) < rwis(optimal_location_temp) 

    optimal_location_temp = optimal_location; 

end 

end 

   % repeat above function for other inputs  

    optimal_location= optimal_location_temp; 

  

dd=1; 

answe = zeros(ncells_long,ncells_lat); 

for k = 1: ncells_long * ncells_lat 

                   lat1 = floor(k./ncells_long)+1; 
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                   long1 = mod(k,ncells_long);     if long1 ==0 long1 = ncells_long; lat1 = lat1-

1; end                                   

                   answe(long1,lat1)= optimal_location(k); 

                   if optimal_location(k) > 0 

                       lo(dd)= long1; 

                       la(dd)= lat1; 

                       dd=dd+1; 

                   end 

end 

h = surf(answe); colorbar;  view([-89 -90]); 
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