61 research outputs found

    Effect of Zn doping on the Magneto-Caloric effect and Critical Constants of Mott Insulator MnV2O4

    Full text link
    X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV2O4 have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does not change the valence states in Mn and V. It has been shown that the obtained values of critical exponents \b{eta}, {\gamma} and {\delta} do not belong to universal class and the values are in between the 3D Heisenberg model and the mean field interaction model. The magnetization data follow the scaling equation and collapse into two branches indicating that the calculated critical exponents and critical temperature are unambiguous and intrinsic to the system. All the samples show large magneto-caloric effect. The second peak in magneto-caloric curve of Mn0.95Zn0.05V2O4 is due to the strong coupling between orbital and spin degrees of freedom. But 10% Zn doping reduces the residual spins on the V-V pairs resulting the decrease of coupling between orbital and spin degrees of freedom.Comment: 19 pages, 9 Figures. arXiv admin note: substantial text overlap with arXiv:1311.402

    Uncovering temperature-tempted coordination of inclusions within ultra-high-strength-steel via in-situ spectro-microscopy

    Get PDF
    Funding Information: Authors acknowledge Academy of Finland grant #311934 and Kvantum Institute, University of Oulu (Project CLEAN2STEEL) for the financial support. We also thank the crew of the MAX IV laboratory for their support during the beamtime operation. Authors would like to thank Mr. Tun Nyo for the assistance in sample preparation for SEM and X-PEEM, Mr. Jaakko Hannula for insightful discussions, and the Centre for Material Analysis, University of Oulu is also acknowledged for in-house characterizations. Publisher Copyright: © 2022 The Author(s)Despite the common challenge of investigating non-metallic inclusions within ultra-high-strength-steel (UHSS) at sub-micrometer scale via conventional methods, probing nitride inclusions at elevated temperatures is vital for guiding steel’ performance. Herein, an in-situ spectro-microscopic determination using advanced Synchrotron X-ray absorption spectroscopy (XAS) coupled with photoelectron emission microscopy (PEEM) is employed to explore the local structure and electronic properties of selective h-boron nitride (h-BN) containing inclusions (A1 and A2) embedded within steel matrix. While the variation in the relative intensity of π∗/σ∗ excitonic peaks at spatially different locations refers to the polarization and or thickness effects. Several minute features observed in the 192–195 eV energy range show oxygen (O) substituted nitrogen (N) defects (ON,2N,3N), which are more dominant in A2 inclusion. The observed dominance further explains the relatively high intense π∗ peak in A2 due to increased localization. Weak shoulder on the left side of π∗ peak in both room and high-temperature XAS spectra is ascribed to the interaction between h-BN and the local environment, such as Ca-based inclusion or steel matrix. Defects are commonly found in h-BN, and precise identification of the same is vital as they affect the overall physical, chemical, and mechanical properties. Moreover, significant changes in high-temperature B K-edge XAS spectra, such as relative intensity of π∗/σ∗ excitonic peaks at the same location and reduced intensity of defects, suggest the adjusting nature of BN inclusion, complicating their precise prediction and control towards clean steel production.Peer reviewe

    Unraveling compensation between electron transfer and strain in Ni-Ag-MoS2 photocatalyst

    Get PDF
    Despite the boom in catalytic response via constructing interfaces, understanding interfaces’ interaction in heterostructures is still a paradox. In this work, the interaction of Ni with MoS2 in Ni-Ag-MoS2 heterostructure are unveiled through synchrotron X-PEEM and what\u27s more, the missing interaction mechanism at the Ag-MoS2 interface is probed via Raman mapping. The observed competition between the downshift of the E2g1 and A1g modes due to charge carrier injection and the upshift of the E2g1 and A1g modes due to compressive strain during reverse laser power experiment is assigned to the non-uniform growth of Ag nanoparticles, their intimate contact with MoS2, and Ag intercalated layered MoS2. The substantial improvement of the H2 yield of the Ni-Ag-MoS2 (∼55 μmol h−1 g−1) over the pristine MoS2 and the binary Ag-MoS2 evidence successful bonding of Ni, Ag and MoS2. This study highlights the importance of considering both electronic coupling and strain to optically tune electromechanical properties of MoS2

    Unveiling nano-scaled chemical inhomogeneity impacts on corrosion of Ce-modified 2507 super-duplex stainless steels

    Get PDF
    The widely used stainless steels and their deformed variants are anticorrosive in ambient conditions due to passivation layers composed of chromium oxides. Conventionally, corrosion and erosion of the steels are attributed to the breakdown of such layers but seldomly to the origin that depends on surface heterogeneity at the microscopic level. In this work, the nanometer-scaled chemical heterogeneity at the surface unveiled via spectro-microscopy and chemometric analysis unexpectedly dominates the breakdown and corrosion behavior of the cold-rolled Ce-modified 2507 super-duplex stainless steels (SDSS) over its hot-deformed counterpart. Though relatively uniformly covered by a native Cr2O3 layer revealed by X-ray photoemission electron microscopy, the cold-rolled SDSS behaved poorly in passivity because of locally distributed Fe3+ rich nano-islands over the Fe/Cr oxide layer. This atomic-level knowledge provides a deep understanding of corrosion of stainless steel and is expected to benefit corrosion controls of similar high-alloyed metals

    Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model

    Get PDF
    BACKGROUND: Exposure of the airways to carbonaceous nanoparticles can contribute to the development of immune diseases both via the aggravation of the allergic immune response in sensitized individuals and by adjuvant mechanisms during the sensitization against allergens. The cellular and molecular mechanisms involved in these adverse pathways are not completely understood. We recently described that the reduction of carbon nanoparticle-induced lung inflammation by the application of the compatible solute ectoine reduced the aggravation of the allergic response in an animal system. In the current study we investigated the influence of carbon nanoparticles on the sensitization of animals to ovalbumin via the airways. Ectoine was used as a preventive strategy against nanoparticle-induced neutrophilic lung inflammation. METHODS: Balb/c mice were repetitively exposed to the antigen ovalbumin after induction of airway inflammation by carbon nanoparticles, either in the presence or in the absence of ectoine. Allergic sensitization was monitored by measurement of immunoglobulin levels and immune responses in lung and lung draining lymph nodes after challenge. Furthermore the role of dendritic cells in the effect of carbon nanoparticles was studied in vivo in the lymph nodes but also in vitro using bone marrow derived dendritic cells. RESULTS: Animals exposed to antigen in the presence of carbon nanoparticles showed increased effects with respect to ovalbumin sensitization, to the allergic airway inflammation after challenge, and to the specific T(H)2 response in the lymph nodes. The presence of ectoine during the sensitization significantly reduced these parameters. The number of antigen-loaded dendritic cells in the draining lymph nodes was identified as a possible cause for the adjuvant effect of the nanoparticles. In vitro assays indicate that the direct interaction of the particles with dendritic cells is not able to trigger CCR7 expression, while this endpoint is achieved by lung lavage fluid from nanoparticle-exposed animals. CONCLUSIONS: Using the intervention strategy of applying ectoine into the airways of animals we were able to demonstrate the relevance of neutrophilic lung inflammation for the adjuvant effect of carbon nanoparticles on allergic sensitization. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-015-0093-5) contains supplementary material, which is available to authorized users

    Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications

    No full text
    Carbon materials are versatile in nature due to their unique and modifiable surface and ease of production. Nanostructured carbon materials are gaining importance due to their high surface area for application in the energy, biotechnology, biomedical, and environmental fields. According to their structures, carbon allotropes are classified as carbon nanodots, carbon nanoparticles, graphene, oxide, carbon nanotubes, and fullerenes. They are synthesized via several methods, including pyrolysis, microwave method, hydrothermal synthesis, and chemical vapor deposition, and the use of renewable and cheaper agricultural feedstocks and reactants is increasing for reducing cost and simplifying production. This review explores the nanostructured carbon detailed investigation of sources and their relevant reports. Many of the renewable sources are covered as focused here, such as sugar cane waste, pineapple, its solid biomass, rise husk, date palm, nicotine tabacum stems, lapsi seed stone, rubber-seed shell, coconut shell, and orange peels. The main focus of this work is on the various methods used to synthesize these carbon materials from agricultural waste materials, and their important applications for energy storage devices, optoelectronics, biosensors, and polymer coatings
    • …
    corecore