17,842 research outputs found

    Fractional analytic index

    Full text link
    For a finite rank projective bundle over a compact manifold, so associated to a torsion, Dixmier-Douady, 3-class, w, on the manifold, we define the ring of differential operators `acting on sections of the projective bundle' in a formal sense. In particular, any oriented even-dimensional manifold carries a projective spin Dirac operator in this sense. More generally the corresponding space of pseudodifferential operators is defined, with supports sufficiently close to the diagonal, i.e. the identity relation. For such elliptic operators we define the numerical index in an essentially analytic way, as the trace of the commutator of the operator and a parametrix and show that this is homotopy invariant. Using the heat kernel method for the twisted, projective spin Dirac operator, we show that this index is given by the usual formula, now in terms of the twisted Chern character of the symbol, which in this case defines an element of K-theory twisted by w; hence the index is a rational number but in general it is not an integer.Comment: 23 pages, Latex2e, final version, to appear in JD

    Studies of nucleotide sequences in TMV-RNA. II - The action of spleen diesterase

    Get PDF
    Spleen diesterase action on polynucleotide and ribonucleic acid infectivit

    The interaction energy of well-separated Skyrme solitons

    Get PDF
    We prove that the asymptotic field of a Skyrme soliton of any degree has a non-trivial multipole expansion. It follows that every Skyrme soliton has a well-defined leading multipole moment. We derive an expression for the linear interaction energy of well-separated Skyrme solitons in terms of their leading multipole moments. This expression can always be made negative by suitable rotations of one of the Skyrme solitons in space and iso-space.We show that the linear interaction energy dominates for large separation if the orders of the Skyrme solitons' multipole moments differ by at most two. In that case there are therefore always attractive forces between the Skyrme solitons.Comment: 27 pages amslate

    Diffusion, dimensionality and noise in transcriptional regulation

    Full text link
    The precision of biochemical signaling is limited by randomness in the diffusive arrival of molecules at their targets. For proteins binding to the specific sites on the DNA and regulating transcription, the ability of the proteins to diffuse in one dimension by sliding along the length of the DNA, in addition to their diffusion in bulk solution, would seem to generate a larger target for DNA binding, consequently reducing the noise in the occupancy of the regulatory site. Here we show that this effect is largely cancelled by the enhanced temporal correlations in one dimensional diffusion. With realistic parameters, sliding along DNA has surprisingly little effect on the physical limits to the precision of transcriptional regulation.Comment: 8 pages, 2 figure

    Determination of lunar ilmentite abundances from remotely sensed data

    Get PDF
    The mapping of ilmenite on the surface of the moon is a necessary precursor to the investigation of prospective lunar base sites. Telescopic observations of the moon using a variety of narrow bandpass optical interference filters are being performed as a preliminary means of achieving this goal. Specifically, ratios of images obtained using filters centered at 0.40 and 0.56 microns provide quantitative estimates of TiO2 abundances. Analysis of preliminary distribution maps of TiO2 concentrations allows identification of specific high-Ti areas. Investigations of these areas using slit spectra in the range 0.03 to 0.85 microns are underway to search for discrete spectral signatures attributable to ilmenite

    Determination of lunar ilmenite abundances from remotely sensed data

    Get PDF
    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized

    Predicting the effectiveness of hepatitis C virus neutralizing antibodies by bioinformatic analysis of conserved epitope residues using public sequence data

    Get PDF
    Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes

    The Algebras of Large N Matrix Mechanics

    Get PDF
    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark
    corecore