286 research outputs found
Rapid Bayesian position reconstruction for gravitational-wave transients
Within the next few years, Advanced LIGO and Virgo should detect
gravitational waves from binary neutron star and neutron star-black hole
mergers. These sources are also predicted to power a broad array of
electromagnetic transients. Because the electromagnetic signatures can be faint
and fade rapidly, observing them hinges on rapidly inferring the sky location
from the gravitational-wave observations. Markov chain Monte Carlo methods for
gravitational-wave parameter estimation can take hours or more. We introduce
BAYESTAR, a rapid, Bayesian, non-Markov chain Monte Carlo sky localization
algorithm that takes just seconds to produce probability sky maps that are
comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR
will make it possible to search electromagnetic counterparts of compact binary
mergers.Comment: 23 pages, 12 figures, published in Phys. Rev.
Parameter estimation on gravitational waves from neutron-star binaries with spinning components
Inspiraling binary neutron stars are expected to be one of the most
significant sources of gravitational-wave signals for the new generation of
advanced ground-based detectors. We investigate how well we could hope to
measure properties of these binaries using the Advanced LIGO detectors, which
began operation in September 2015. We study an astrophysically motivated
population of sources (binary components with masses
-- and spins of less than )
using the full LIGO analysis pipeline. While this simulated population covers
the observed range of potential binary neutron-star sources, we do not exclude
the possibility of sources with parameters outside these ranges; given the
existing uncertainty in distributions of mass and spin, it is critical that
analyses account for the full range of possible mass and spin configurations.
We find that conservative prior assumptions on neutron-star mass and spin lead
to average fractional uncertainties in component masses of , with
little constraint on spins (the median upper limit on the spin of the
more massive component is ). Stronger prior constraints on
neutron-star spins can further constrain mass estimates, but only marginally.
However, we find that the sky position and luminosity distance for these
sources are not influenced by the inclusion of spin; therefore, if LIGO detects
a low-spin population of BNS sources, less computationally expensive results
calculated neglecting spin will be sufficient for guiding electromagnetic
follow-up.Comment: 10 pages, 9 figure
Recommended from our members
Patient-Reported Satisfaction and Study Drug Discontinuation: Post-Hoc Analysis of Findings from ROCKET AF.
IntroductionPatient-reported outcomes (PROs) and satisfaction endpoints are increasingly important in clinical trials and may be associated with treatment adherence. In this post hoc substudy from ROCKET AF, we examined whether patient-reported satisfaction was associated with study drug discontinuation.MethodsROCKET AF (n = 14,264) compared rivaroxaban with warfarin for prevention of stroke and systemic embolism in patients with atrial fibrillation. We analyzed treatment satisfaction scores: the Anti-Clot Treatment Scale (ACTS) and Treatment Satisfaction Questionnaire for Medication version II (TSQM II). We compared satisfaction with study drug between the two treatment arms, and examined the association between satisfaction and patient-driven study drug discontinuation (stopping study drug due to withdrawal of consent, noncompliance, or loss to follow-up).ResultsA total of 1577 (11%) patients participated in the Patient Satisfaction substudy; 1181 (8.3%) completed both the ACTS and TSQM II 4 weeks after starting study drug. Patients receiving rivaroxaban did not experience significant differences in satisfaction compared with those receiving warfarin. During a median follow-up of 1.6 years, 448 premature study drug discontinuations occurred (213 rivaroxaban group; 235 warfarin group), of which 116 (26%) were patient-driven (52 [24%] rivaroxaban group; 64 [27%] warfarin group). No significant differences were observed between satisfaction level and rates of patient-driven study drug discontinuation.ConclusionsStudy drug satisfaction did not predict rate of study drug discontinuation. No significant difference was observed between satisfaction with warfarin and rivaroxaban, as expected given the double-blind trial design. Although these results are negative, the importance of PRO data will only increase, and these analyses may inform future studies that explore the relationship between drug-satisfaction PROs, adherence, and clinical outcomes. CLINICALTRIALS.GOV: NCT00403767.FundingThe ROCKET AF trial was funded by Johnson & Johnson and Bayer
Purely-long-range bound states of HeHe
We predict the presence and positions of purely-long-range bound states of
HeHe near the atomic
limits. The results of the full multichannel and approximate models are
compared, and we assess the sensitivity of the bound states to atomic
parameters characterizing the potentials. Photoassociation to these
purely-long-range molecular bound states may improve the knowledge of the
scattering length associated with the collisions of two ultracold
spin-polarized He atoms, which is important for studies of
Bose-Einstein condensates.Comment: 16 pages, 5 figure
The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo
We anticipate the first direct detections of gravitational waves (GWs) with
Advanced LIGO and Virgo later this decade. Though this groundbreaking technical
achievement will be its own reward, a still greater prize could be observations
of compact binary mergers in both gravitational and electromagnetic channels
simultaneously. During Advanced LIGO and Virgo's first two years of operation,
2015 through 2016, we expect the global GW detector array to improve in
sensitivity and livetime and expand from two to three detectors. We model the
detection rate and the sky localization accuracy for binary neutron star (BNS)
mergers across this transition. We have analyzed a large, astrophysically
motivated source population using real-time detection and sky localization
codes and higher-latency parameter estimation codes that have been expressly
built for operation in the Advanced LIGO/Virgo era. We show that for most BNS
events the rapid sky localization, available about a minute after a detection,
is as accurate as the full parameter estimation. We demonstrate that Advanced
Virgo will play an important role in sky localization, even though it is
anticipated to come online with only one-third as much sensitivity as the
Advanced LIGO detectors. We find that the median 90% confidence region shrinks
from ~500 square degrees in 2015 to ~200 square degrees in 2016. A few distinct
scenarios for the first LIGO/Virgo detections emerge from our simulations.Comment: 17 pages, 11 figures, 5 tables. For accompanying data, see
http://www.ligo.org/scientists/first2year
A Strategy for LSST to Unveil a Population of Kilonovae without Gravitational-wave Triggers
We present a cadence optimization strategy to unveil a large population of kilonovae using optical imaging alone. These transients are generated during binary neutron star and potentially neutron star–black hole mergers and are electromagnetic counterparts to gravitational-wave signals detectable in nearby events with Advanced LIGO, Advanced Virgo, and other interferometers that will be online in the near future. Discovering a large population of kilonovae will allow us to determine how heavy-element production varies with the intrinsic parameters of the merger and across cosmic time. The rate of binary neutron star mergers is still uncertain, but only few (≾ 15) events with associated kilonovae may be detectable per year within the horizon of next-generation ground-based interferometers. The rapid evolution (~days) at optical/infrared wavelengths, relatively low luminosity, and the low volumetric rate of kilonovae makes their discovery difficult, especially during blind surveys of the sky. We propose future large surveys to adopt a rolling cadence in which g-i observations are taken nightly for blocks of 10 consecutive nights. With the current baseline2018a cadence designed for the Large Synoptic Survey Telescope (LSST), l≾ 7.5 poorly sampled kilonovae are expected to be detected in both the Wide Fast Deep (WFD) and Deep Drilling Fields (DDF) surveys per year, under optimistic assumptions on their rate, duration, and luminosity. We estimate the proposed strategy to return up to ~272 GW170817-like kilonovae throughout the LSST WFD survey, discovered independently from gravitational-wave triggers
Supplement: "Going the Distance: Mapping Host Galaxies of LIGO and Virgo Sources in Three Dimensions Using Local Cosmography and Targeted Follow-up" (2016, ApJL, 829, L15)
This is a supplement to the Letter of Singer et al., in which we demonstrated a rapid algorithm for obtaining joint 3D estimates of sky location and luminosity distance from observations of binary neutron star mergers with Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions and redshifts of possible host galaxies can provide large-aperture but small field of view instruments with a manageable list of targets to search for optical or infrared emission. In this Supplement, we document the new HEALPix-based file format for 3D localizations of gravitational-wave transients. We include Python sample code to show the reader how to perform simple manipulations of the 3D sky maps and extract ranked lists of likely host galaxies. Finally, we include mathematical details of the rapid volume reconstruction algorithm
Parameter Estimation for Binary Neutron-star Coalescences with Realistic Noise during the Advanced LIGO Era
Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10^(-3) M_☉. The median 90% (50%) credible region for sky localization is ~ 600 deg^2 (~150 deg^2), with 3% (30%) of detected events localized within 100 deg^2. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible
- …
