4,211 research outputs found
Marginalising instrument systematics in HST WFC3 transit lightcurves
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations
at 1.1-1.7m probe primarily the HO absorption band at 1.4m, and
has provided low resolution transmission spectra for a wide range of
exoplanets. We present the application of marginalisation based on Gibson
(2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to
better determine important transit parameters such as R/R, important
for accurate detections of HO. We approximate the evidence, often referred
to as the marginal likelihood, for a grid of systematic models using the Akaike
Information Criterion (AIC). We then calculate the evidence-based weight
assigned to each systematic model and use the information from all tested
models to calculate the final marginalised transit parameters for both the
band-integrated, and spectroscopic lightcurves to construct the transmission
spectrum. We find that a majority of the highest weight models contain a
correction for a linear trend in time, as well as corrections related to HST
orbital phase. We additionally test the dependence on the shift in spectral
wavelength position over the course of the observations and find that
spectroscopic wavelength shifts , best describe the
associated systematic in the spectroscopic lightcurves for most targets, while
fast scan rate observations of bright targets require an additional level of
processing to produce a robust transmission spectrum. The use of
marginalisation allows for transparent interpretation and understanding of the
instrument and the impact of each systematic evaluated statistically for each
dataset, expanding the ability to make true and comprehensive comparisons
between exoplanet atmospheres.Comment: 19 pages, 13 figures, 8 tables, Accepted to Ap
Photoemission of a doped Mott insulator: spectral weight transfer and qualitative Mott-Hubbard description
The spectral weight evolution of the low-dimensional Mott insulator TiOCl
upon alkali-metal dosing has been studied by photoelectron spectroscopy. We
observe a spectral weight transfer between the lower Hubbard band and an
additional peak upon electron-doping, in line with quantitative expectations in
the atomic limit for changing the number of singly and doubly occupied sites.
This observation is an unconditional hallmark of correlated bands and has not
been reported before. In contrast, the absence of a metallic quasiparticle peak
can be traced back to a simple one-particle effect.Comment: 4 pages, 4 figures, related theoretical work can be found in
arXiv:0905.1276; shortene
Left main bronchus compression due to main pulmonary artery dilatation in pulmonary hypertension: two case reports
Abstract. Pulmonary arterial dilatation associated with pulmonary hypertension may result in significant compression of local structures. Left main coronary artery and left recurrent laryngeal nerve compression have been described. Tracheobronchial compression from pulmonary arterial dilatation is rare in adults, and there are no reports in the literature of its occurrence in idiopathic pulmonary arterial hypertension. Compression in infants with congenital heart disease has been well described. We report 2 cases of tracheobronchial compression: first, an adult patient with idiopathic pulmonary arterial hypertension who presents with symptomatic left main bronchus compression, and second, an adult patient with Eisenmenger ventricular septal defect and right-sided aortic arch, with progressive intermedius and right middle lobe bronchi compression in association with enlarged pulmonary arteries
Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]
An error was detected in the code used for the analysis of the HD209458b
sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P
profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C
Prediction and measurement of radiation damage to CMOS devices on board spacecraft
The CMOS Radiation Effects Measurement (CREM) experiment is presently being flown on the Explorer-55. The purpose of the experiment is to evaluate device performance in the actual space radiation environment and to correlate the respective measurements to on-the-ground laboratory irradiation results. The experiment contains an assembly of C-MOS and P-MOS devices shielded in front by flat slabs of aluminum and by a practically infinite shield in the back. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on-the-ground simulation experiment with Co-60, indicates that the measured space damage is smaller than predicted by about a factor of 2-3 for thin shields, but agrees well with predictions for thicker shields
Pressure dependence of the Verwey transition in magnetite: an infrared spectroscopic point of view
We investigated the electronic and vibrational properties of magnetite at
temperatures from 300 K down to 10 K and for pressures up to 10 GPa by
far-infrared reflectivity measurements. The Verwey transition is manifested by
a drastic decrease of the overall reflectance and the splitting of the phonon
modes as well as the activation of additional phonon modes. In the whole
studied pressure range the down-shift of the overall reflectance spectrum
saturates and the maximum number of phonon modes is reached at a critical
temperature, which sets a lower bound for the Verwey transition temperature
T. Based on these optical results a pressure-temperature phase
diagram for magnetite is proposed.Comment: 5 pages, 4 figures; accepted for publication in J. Appl. Phy
The Cone of Learning: A Tertiary Level Empirical Study across Traditional, Blended and Flexible Learning Modes
Tertiary institutions are moving towards more flexible teaching and learning environments. Relationships between tertiary teaching and learning modes, student outcomes, and learning perceptions have engaged partial studies. This article employs a holistic view. It develops and tests a tertiary teaching and learning environment from a value enhancement approach. Here student-preferred teaching and learning modes are assessed. The tertiary institution teaching and learning offerings or modes are mapped against student learning outcomes, as defined by the tertiary institution ‘business enhancement measurement model’. This research shows tertiary institutions can more closely align their educational teaching and learning solutions towards their student’s perceived learning requirements, whilst also enhancing its student’s skills
Engaging Technologies-Savvy Consumers With The Internet Of Things
Consumers today engage in and with interactive online activities. These activities are compiled from a vast array of online-hosted components loosely termed the Internet of Things (IoT). At the same time innovative corporates are delivering latest IoT-related and consumer-targeted smart solutions. This paper proposes the MVL model as a pathway to examine consumer value relationships, and to then map these relationships against relevant IoT-generated revenue streams. Hence, by capturing and tracking their IoT savvy consumer’s actions and activities, the corporate can gauge the success of their IoT offerings
- …