27 research outputs found

    Training on Climate Risk Management in Agricultural Advisory Services in Senegal

    Get PDF
    The phenomenon of climate change encompasses all sectors of life, and its impact on the agricultural sector (farming and livestock breeding) is well established. Faced with these challenges of adaptation and survival, it is important to raise awareness among all those involved (technicians and producers) of the basic concepts and decision-support tools needed to derive maximum benefit from agricultural activities. It was against this backdrop that AICCRA set up a train-the-trainer program with the support of universities, agricultural technicians, producers' organizations and agricultural technology extension services. A model curriculum was selected at an earlier event in Dakar from December 05 to 10, 2022 (Fleur de Lys Point E). A train-the-trainer workshop was organized in Saly from March 06 to 16, 2023 to validate and improve the training modules. The AICCRA project (Accelerating Impacts of CGIAR Climate Research in Africa), is a three (3) year project (2021-2023) funded by the World Bank (IDA) in six (6) African countries: Ethiopia, Kenya, Zambia, Ghana, Mali and Senegal. The main objective of AICCRA-Senegal is to strengthen the technical, institutional and human capacities needed to improve the transfer of climate-related information, decision-making tools. and technologies in support of scaling-up efforts to strengthen the resilience of agricultural and livestock value chains, particularly in arid zones. As part of this training program, AICCRA aims to improve and facilitate access to climate information services and climate-smart agricultural technologies for the project's target farmers, via extension agents. AICCRA therefore aims to help build producers' resilience and make it easier for them to understand weather and climate phenomena, so they can forecast and plan their farming activities effectively. Capacity building for intermediate users, in particular of agricultural extension and advisory services (EAS) in Senegal and five other target countries is a key element of AICCRA's strategy for achieving this objective

    The roots of future rice harvests

    Get PDF
    The authors thank the Global Rice Science Partnership and Agropolis Fondation (Special grant n° 1400–009 and Rhizopolis grant n° 1001–005) benefiting from a national ANR Investissement d’Avenir” grant ANR-10-LABX-001-01) for supporting the workshop. They acknowledge the assistance of Nathalie Pivot, Cirad and Véronique Rafin, INRA in workshop organization. The root research at Cirad and University of Aberdeen is supported by the European Grant (FP7/2007-2013) under grant agreement n° 289300.27 EURoot “Enhancing resource Uptake from ROOTs under stress in cereal crops”. Research at IRRI is supported by the Generation Challenge Program and the Bill and Melinda Gates Foundation. J.X. is supported by the AcRF Tier 2 grant (MOE2009-T2-1-060) from the Ministry of Education of Singapore and National Research Foundation Singapore under its Competitive Research Programme (CRP Award No. NRF2010 NRF-CRP002-018). Doan Trung Luu is supported by the EU Marie Curie International Outgoing Fellowship 'ORYZAQUA – Cell Biology of Rice Aquaporins' (PIOF-GA-2011-300150). AP acknowledges the Generation Challenge Programme funded project “Targeting drought avoidance root traits to enhance rice productivity under water limited environments”. Financial support for A.G. Diedhiou was provided by the Université Cheikh Anta Diop (UCAD, VE12/13, CpVIII-Ar4 ) and GRISP. *This paper is dedicated to the late memory of Pr Ping Wu who passed away in a tragic car accident on June 12th, 2014.Peer reviewedPublisher PD

    Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

    Get PDF
    Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment

    Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

    Get PDF
    Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modelling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including GWAS and QTL approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment
    corecore