17 research outputs found
Additional file 1 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 1: Supplemental information.1. Compliance with the Guidlines for Accurate and Transparent Health Estimates Reporting (GATHER). 2. HIV data sources and data processing. 3. Covariate and auxiliary data. 4. Statistical model. 5. References
Additional file 4 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 4: Supplemental results.1. README. 2. Prevalence range across districts. 3. Prevalence range between sexes. 4. Prevalence range between ages. 5. Age-specific district ranges
Additional file 3 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 3: Supplemental figures.Figure S1. Prevalence of male circumcision. Figure S2. Prevalence of signs and symptoms of sexually transmitted infections. Figure S3. Prevalence of marriage or living as married. Figure S4. Prevalence of partner living elsewhere among females. Figure S5. Prevalence of condom use during most recent sexual encounter. Figure S6. Prevalence of sexual activity among young females. Figure S7. Prevalence of multiple partners among males in the past year. Figure S8. Prevalence of multiple partners among females in the past year. Figure S9. HIV prevalence predictions from the boosted regression tree model. Figure S10. HIV prevalence predictions from the generalized additive model. Figure S11. HIV prevalence predictions from the lasso regression model. Figure S12. Modeling regions. Figure S13. Age- and sex-specific vs. adult prevalence modeling. Figure S14. Data sensitivity. Figure S15. Model specification validation. Figure S16. Modeled and re-aggregated adult prevalence comparison. Figure S17. HIV prevalence raking factors for males. Figure S18. HIV prevalence raking factors for females. Figure S19. Age-specific HIV prevalence in males, 2000. Figure S20. Age-specific HIV prevalence in females, 2000. Figure S21. Age-specific HIV prevalence in males, 2005. Figure S22. Age-specific HIV prevalence in females, 2005. Figure S23. Age-specific HIV prevalence in males, 2010. Figure S24. Age-specific HIV prevalence in females, 2010. Figure S25. Age-specific HIV prevalence in males, 2018. Figure S26. Age-specific HIV prevalence in females, 2018. Figure S27. Age-specific uncertainty interval range estimates in males, 2000. Figure S28. Age-specific uncertainty interval range estimates in females, 2000. Figure S29. Age-specific uncertainty interval range estimates in males, 2005. Figure S30. Age-specific uncertainty interval range estimates in females, 2005. Figure S31. Age-specific uncertainty interval range estimates in males, 2010. Figure S32. Age-specific uncertainty interval range estimates in females, 2010. Figure S33. Age-specific uncertainty interval range estimates in males, 2018. Figure S34. Age-specific uncertainty interval range estimates in females, 2018. Figure S35. Change in HIV prevalence in males, 2000-2005. Figure S36. Change in HIV prevalence in females, 2000-2005. Figure S37. Change in HIV prevalence in males, 2005-2010. Figure S38. Change in HIV prevalence in females, 2005-2010. Figure S39. Change in HIV prevalence in males, 2010-2018. Figure S40. Change in HIV prevalence in females, 2010-2018. Figure S41. Space mesh for geostatistical models
Additional file 2 of Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018
Additional file 2: Supplemental tables.Table S1. HIV seroprevalence survey data. Table S2. ANC sentinel surveillance data. Table S3. HIV and covariates surveys excluded from this analysis. Table S4. Sources for pre-existing covariates. Table S5. HIV covariate survey data. Table S6. Fitted model parameters
Mapping subnational HIV mortality in six Latin American countries with incomplete vital registration systems
Background: Human immunodeficiency virus (HIV) remains a public health priority in Latin America. While the burden of HIV is historically concentrated in urban areas and high-risk groups, subnational estimates that cover multiple countries and years are missing. This paucity is partially due to incomplete vital registration (VR) systems and statistical challenges related to estimating mortality rates in areas with low numbers of HIV deaths. In this analysis, we address this gap and provide novel estimates of the HIV mortality rate and the number of HIV deaths by age group, sex, and municipality in Brazil, Colombia, Costa Rica, Ecuador, Guatemala, and Mexico. Methods: We performed an ecological study using VR data ranging from 2000 to 2017, dependent on individual country data availability. We modeled HIV mortality using a Bayesian spatially explicit mixed-effects regression model that incorporates prior information on VR completeness. We calibrated our results to the Global Burden of Disease Study 2017. Results: All countries displayed over a 40-fold difference in HIV mortality between municipalities with the highest and lowest age-standardized HIV mortality rate in the last year of study for men, and over a 20-fold difference for women. Despite decreases in national HIV mortality in all countries—apart from Ecuador—across the period of study, we found broad variation in relative changes in HIV mortality at the municipality level and increasing relative inequality over time in all countries. In all six countries included in this analysis, 50% or more HIV deaths were concentrated in fewer than 10% of municipalities in the latest year of study. In addition, national age patterns reflected shifts in mortality to older age groups—the median age group among decedents ranged from 30 to 45 years of age at the municipality level in Brazil, Colombia, and Mexico in 2017. Conclusions: Our subnational estimates of HIV mortality revealed significant spatial variation and diverging local trends in HIV mortality over time and by age. This analysis provides a framework for incorporating data and uncertainty from incomplete VR systems and can help guide more geographically precise public health intervention to support HIV-related care and reduce HIV-related deaths.</p
Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
BackgroundRegularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels.MethodsWe applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level.FindingsIn 2019, there were 12·2 million (95% UI 11·0-13·6) incident cases of stroke, 101 million (93·2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6·55 million (6·00-7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8-12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1-6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0-73·0), prevalent strokes increased by 85·0% (83·0-88·0), deaths from stroke increased by 43·0% (31·0-55·0), and DALYs due to stroke increased by 32·0% (22·0-42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0-18·0), mortality decreased by 36·0% (31·0-42·0), prevalence decreased by 6·0% (5·0-7·0), and DALYs decreased by 36·0% (31·0-42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0-24·0) and incidence rates increased by 15·0% (12·0-18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5-3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5-3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57-8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97-3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01-1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7-90·8] DALYs or 55·5% [48·2-62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3-48·6] DALYs or 24·3% [15·7-33·2]), high fasting plasma glucose (28·9 million [19·8-41·5] DALYs or 20·2% [13·8-29·1]), ambient particulate matter pollution (28·7 million [23·4-33·4] DALYs or 20·1% [16·6-23·0]), and smoking (25·3 million [22·6-28·2] DALYs or 17·6% [16·4-19·0]).InterpretationThe annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.FundingBill & Melinda Gates Foundation
Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
BackgroundThe rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020.MethodsWe estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US per capita, purchasing-power parity-adjusted US8·8 trillion (95% uncertainty interval [UI] 8·7–8·8) or 40·4 billion (0·5%, 95% UI 0·5–0·5) was development assistance for health provided to low-income and middle-income countries, which made up 24·6% (UI 24·0–25·1) of total spending in low-income countries. We estimate that 13·7 billion was targeted toward the COVID-19 health response. 1·4 billion was repurposed from existing health projects. 2·4 billion (17·9%) was for supply chain and logistics. Only 1519 (1448–1591) per person in 2050, although spending across countries is expected to remain varied.InterpretationGlobal health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all.</h4
Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
BackgroundRegularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels.MethodsWe applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level.FindingsIn 2019, there were 12·2 million (95% UI 11·0-13·6) incident cases of stroke, 101 million (93·2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6·55 million (6·00-7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8-12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1-6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0-73·0), prevalent strokes increased by 85·0% (83·0-88·0), deaths from stroke increased by 43·0% (31·0-55·0), and DALYs due to stroke increased by 32·0% (22·0-42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0-18·0), mortality decreased by 36·0% (31·0-42·0), prevalence decreased by 6·0% (5·0-7·0), and DALYs decreased by 36·0% (31·0-42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0-24·0) and incidence rates increased by 15·0% (12·0-18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5-3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5-3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57-8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97-3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01-1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7-90·8] DALYs or 55·5% [48·2-62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3-48·6] DALYs or 24·3% [15·7-33·2]), high fasting plasma glucose (28·9 million [19·8-41·5] DALYs or 20·2% [13·8-29·1]), ambient particulate matter pollution (28·7 million [23·4-33·4] DALYs or 20·1% [16·6-23·0]), and smoking (25·3 million [22·6-28·2] DALYs or 17·6% [16·4-19·0]).InterpretationThe annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.FundingBill & Melinda Gates Foundation
Global investments in pandemic preparedness and COVID-19: development assistance and domestic spending on health between 1990 and 2026
BACKGROUND: The COVID-19 pandemic highlighted gaps in health surveillance systems, disease prevention, and treatment globally. Among the many factors that might have led to these gaps is the issue of the financing of national health systems, especially in low-income and middle-income countries (LMICs), as well as a robust global system for pandemic preparedness. We aimed to provide a comparative assessment of global health spending at the onset of the pandemic; characterise the amount of development assistance for pandemic preparedness and response disbursed in the first 2 years of the COVID-19 pandemic; and examine expectations for future health spending and put into context the expected need for investment in pandemic preparedness. METHODS: In this analysis of global health spending between 1990 and 2021, and prediction from 2021 to 2026, we estimated four sources of health spending: development assistance for health (DAH), government spending, out-of-pocket spending, and prepaid private spending across 204 countries and territories. We used the Organisation for Economic Co-operation and Development (OECD)'s Creditor Reporting System (CRS) and the WHO Global Health Expenditure Database (GHED) to estimate spending. We estimated development assistance for general health, COVID-19 response, and pandemic preparedness and response using a keyword search. Health spending estimates were combined with estimates of resources needed for pandemic prevention and preparedness to analyse future health spending patterns, relative to need. FINDINGS: In 2019, at the onset of the COVID-19 pandemic, US7·3 trillion (95% UI 7·2-7·4) in 2019; 293·7 times the 43·1 billion in development assistance was provided to maintain or improve health. The pandemic led to an unprecedented increase in development assistance targeted towards health; in 2020 and 2021, 37·8 billion was provided for the health-related COVID-19 response. Although the support for pandemic preparedness is 12·2% of the recommended target by the High-Level Independent Panel (HLIP), the support provided for the health-related COVID-19 response is 252·2% of the recommended target. Additionally, projected spending estimates suggest that between 2022 and 2026, governments in 17 (95% UI 11-21) of the 137 LMICs will observe an increase in national government health spending equivalent to an addition of 1% of GDP, as recommended by the HLIP. INTERPRETATION: There was an unprecedented scale-up in DAH in 2020 and 2021. We have a unique opportunity at this time to sustain funding for crucial global health functions, including pandemic preparedness. However, historical patterns of underfunding of pandemic preparedness suggest that deliberate effort must be made to ensure funding is maintained. FUNDING: Bill & Melinda Gates Foundation
Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
BackgroundThe rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020.MethodsWe estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US per capita, purchasing-power parity-adjusted US8·8 trillion (95% uncertainty interval [UI] 8·7–8·8) or 40·4 billion (0·5%, 95% UI 0·5–0·5) was development assistance for health provided to low-income and middle-income countries, which made up 24·6% (UI 24·0–25·1) of total spending in low-income countries. We estimate that 13·7 billion was targeted toward the COVID-19 health response. 1·4 billion was repurposed from existing health projects. 2·4 billion (17·9%) was for supply chain and logistics. Only 1519 (1448–1591) per person in 2050, although spending across countries is expected to remain varied.InterpretationGlobal health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all.</h4
