21,907 research outputs found
The effects of shoe temperature on the kinetics and kinematics of running
The aim of the current investigation was to examine the effects of cooled footwear on the kinetics and kinematics of running in comparison to footwear at normal temperature. Twelve participants ran at 4.0 m/s ± 5% in both cooled and normal temperature footwear conditions over a force platform. Two identical footwear were worn, one of which was cooled for 30 min. Lower extremity kinematics were obtained using a motion capture system and tibial accelerations were measured using a triaxial accelerometer. Differences between cooled and normal footwear temperatures were contrasted using paired samples t-tests. The results showed that midsole temperature (cooled = 4.21 °C and normal = 23.25 °C) and maximal midsole deformation during stance (cooled = 12.85 mm and normal = 14.52 mm) were significantly reduced in the cooled footwear. In addition, instantaneous loading rate (cooled = 186.21 B.W/s and normal = 167.08 B W/s), peak tibial acceleration (cooled = 12.75 g and normal = 10.70 g) and tibial acceleration slope (cooled = 478.69 g/s and normal = 327.48 g/s) were significantly greater in the cooled footwear. Finally, peak eversion (cooled = −10.57 ° and normal = −7.83°) and tibial internal rotation (cooled = 10.67 ° and normal = 7.77°) were also shown to be significantly larger in the cooled footwear condition. This study indicates that running in cooled footwear may place runners at increased risk from the biomechanical parameters linked to the aetiology of injuries
The polar temperature of Venus
Interferometric and polarization measurements of polar regions of Venu
Colour Coherence in Photon Induced Reactions
Colour coherence in hard photoproduction is considered using the Monte Carlo
event generators PYTHIA and HERWIG. Significant effects in the parton shower
are found using multijet observables for direct and resolved photon induced
reactions. The particle flow in the interjet region of direct processes shows a
strong influence of string fragmentation effects.Comment: 6 pages, LaTeX, 6 eps figures included, to appear in the proceedings
of the workshop "Future Physics at HERA
Automatic focus control for facsimile cameras
An electronic circuit for controlling the focus of facsimile cameras is described. The circuit consists of balanced a.c. amplifiers, two square law function generators, and a differential amplifier and power drive. The invention includes a method for maintaining the imaging sensor at the expected location of the focal plane as the facsimile camera scans a scene or terrain. A block diagram of the electronic circuitry is provided
Bose-Einstein Condensation on a Permanent-Magnet Atom Chip
We have produced a Bose-Einstein condensate on a permanent-magnet atom chip
based on periodically magnetized videotape. We observe the expansion and
dynamics of the condensate in one of the microscopic waveguides close to the
surface. The lifetime for atoms to remain trapped near this dielectric material
is significantly longer than above a metal surface of the same thickness. These
results illustrate the suitability of microscopic permanent-magnet structures
for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com
Bose-Einstein Condensation on a Permanent-Magnet Atom Chip
We have produced a Bose-Einstein condensate on a permanent-magnet atom chip
based on periodically magnetized videotape. We observe the expansion and
dynamics of the condensate in one of the microscopic waveguides close to the
surface. The lifetime for atoms to remain trapped near this dielectric material
is significantly longer than above a metal surface of the same thickness. These
results illustrate the suitability of microscopic permanent-magnet structures
for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com
Tunable quantum spin liquidity in the 1/6th-filled breathing kagome lattice
We present measurements on a series of materials,
LiInScMoO, that can be described as a 1/6th-filled
breathing kagome lattice. Substituting Sc for In generates chemical pressure
which alters the breathing parameter non-monotonically. SR experiments
show that this chemical pressure tunes the system from antiferromagnetic long
range order to a quantum spin liquid phase. A strong correlation with the
breathing parameter implies that it is the dominant parameter controlling the
level of magnetic frustration, with increased kagome symmetry generating the
quantum spin liquid phase. Magnetic susceptibility measurements suggest that
this is related to distinct types of charge order induced by changes in lattice
symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134
(2016)]. The specific heat for samples at intermediate Sc concentration and
with minimal breathing parameter, show consistency with the predicted
quantum spin liquid.Comment: Accepted for publication in Physical Review Letter
Simulations of a Scintillator Compton Gamma Imager for Safety and Security
We are designing an all-scintillator Compton gamma imager for use in security
investigations and remediation actions involving radioactive threat material.
To satisfy requirements for a rugged and portable instrument, we have chosen
solid scintillator for the active volumes of both the scatter and absorber
detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have
constructed models using four different materials for the scatter detector:
LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using
angular resolution, efficiency, and image resolution. We find that while PVT
provides worse performance than that of the detectors based entirely on
inorganic scintillators, all of the materials investigated for the scatter
detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in
IEEE Transactions on Nuclear Scienc
- …
