19 research outputs found

    The use of Shigella flexneri to study bacterial cell biology during infection of host cells

    Get PDF
    Shigella flexneri is a facultative intracellular bacterium and a paradigm to address key issues in cell biology and cell-autonomous immunity. Cell-autonomous immunity is a system of host defence that senses invading pathogens and mobilises anti-pathogen mechanisms, including autophagy. Recently, it has become clear that the cytoskeleton is directly linked to cell-autonomous immunity. During my PhD, I used S. flexneri to investigate bacterial factors that mediate interactions with the cytoskeleton and cell-autonomous immunity. Bacteria have counterparts to the host cytoskeleton components actin (e.g. MreB), microtubules (e.g. FtsZ), intermediate filaments (e.g. CreS) and septins (MinCD). However, rearrangements of the bacterial cytoskeleton have never been followed in pathogenic bacteria during infection of host cells. In Chapter 1, I generate new tools to follow the Shigella MreB, FtsZ and MinC cytoskeleton during infection of host cells using fluorescence microscopy. S. flexneri can exploit the host actin cytoskeleton to form ‘actin tails’ for its own motility. Actin-based motility enables bacterial cell-to-cell spread and evasion of the immune system. Polar localisation of the autotransporter IcsA is required for efficient actin tail formation, yet how IcsA is targeted to the bacterial cell pole was not fully known. In Chapter 2, I use Shigella MreB-msfGFPsw to reveal that MreB targets IcsA to the bacterial cell pole to promote actin tail formation and autophagy escape. To entrap Shigella for autophagy, the host septin cytoskeleton forms cage-like structures around actin polymerising bacteria. How septins recognise bacteria is poorly understood. In Chapter 3, I report that septins sense micron-scale curvature, cardiolipin and cell growth of dividing bacterial cells to inhibit Shigella cell division via autophagy and lysosome fusion. Therefore, the host septin cytoskeleton offers great potential to boost the recognition and restriction of dividing bacterial cells. Overall, the findings in this thesis have discovered that by controlling bacterial cell polarity, morphology and division, the bacterial cytoskeleton shapes host-pathogen interactions. Moreover, they highlight that investigation of the bacterial cytoskeleton during infection can inspire the development of new therapeutic regimes for infection control.Open Acces

    Bacterial cell division is recognized by the septin cytoskeleton for restriction by autophagy.

    Get PDF
    Septins are cytoskeletal proteins widely recognized for their role in eukaryotic cell division. Septins also assemble into cage-like structures that entrap cytosolic Shigella flexneri targeted to macroautophagy/autophagy. Although the Shigella septin cage was discovered ~10 y ago, how septins recognize Shigella was poorly understood. We found that septins are recruited to regions of micrometer-scale curvature presented by dividing bacterial cells, and cardiolipin (a curvature-specific phospholipid) promotes septin recruitment to these regions. Chemical manipulation of bacteria revealed that following recruitment, septins assemble into cages around growing bacterial cells. Once assembled, septin cages inhibit Shigella cell division by autophagy and fusion with lysosomes. Thus, recognition of dividing bacterial cells by the septin cytoskeleton targets intracellular pathogens to antibacterial autophagy

    Interactions between Shigella flexneri and the Autophagy Machinery.

    Get PDF
    Autophagy, an intracellular degradation process, is increasingly recognized as having important roles in host defense. Interactions between Shigella flexneri and the autophagy machinery were first discovered in 2005. Since then, work has shown that multiple autophagy pathways are triggered by S. flexneri, and autophagic responses can have different roles during Shigella infection. Here, we review the interactions between S. flexneri and the autophagy machinery, highlighting that studies using Shigella can reveal the breadth of autophagic responses available to the host

    Mitochondria promote septin assembly into cages that entrap Shigella for autophagy.

    Get PDF
    Septins are cytoskeletal proteins implicated in cytokinesis and host-pathogen interactions. During macroautophagy/autophagy of Shigella flexneri, septins assemble into cage-like structures to entrap actin-polymerizing bacteria and restrict their dissemination. How septins assemble to entrap bacteria is not fully known. We discovered that mitochondria support septin cage assembly to promote autophagy of Shigella. Consistent with roles for the cytoskeleton in mitochondrial dynamics, we showed that DNM1L/DRP1 (dynamin 1 like) can interact with septins to enhance mitochondrial fission. Remarkably, Shigella fragment mitochondria and escape from septin cage entrapment in order to avoid autophagy. These results uncover a close relationship between mitochondria and septin assembly, and identify a new role for mitochondria in bacterial autophagy

    Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae

    Get PDF
    Bdellovibrio bacteriovorus are predatory bacteria that invade and kill a range of Gram-negative bacterial pathogens in natural environments and in vitro [ 1 and 2]. In this study, we investigated Bdellovibrio as an injected, antibacterial treatment in vivo, using zebrafish (Danio rerio) larvae infected with an antibiotic-resistant strain of the human pathogen Shigella flexneri. When injected alone, Bdellovibrio can persist for more than 24 hr in vivo yet exert no pathogenic effects on zebrafish larvae. Bdellovibrio injection of zebrafish containing a lethal dose of Shigella promotes pathogen killing, leading to increased zebrafish survival. Live-cell imaging of infected zebrafish reveals that Shigella undergo rounding induced by the invasive predation from Bdellovibrio in vivo. Furthermore, Shigella-dependent replication of Bdellovibrio was captured inside the zebrafish larvae, indicating active predation in vivo. Bdellovibrio can be engulfed and ultimately eliminated by host neutrophils and macrophages, yet have a sufficient dwell time to prey on pathogens. Experiments in immune-compromised zebrafish reveal that maximal therapeutic benefits of Bdellovibrio result from the synergy of both bacterial predation and host immunity, but that in vivo predation contributes significantly to the survival outcome. Our results demonstrate that successful antibacterial therapy can be achieved via the host immune system working together with bacterial predation by Bdellovibrio. Such cooperation may be important to consider in the fight against antibiotic-resistant infections in vivo

    Shigella MreB promotes polar IcsA positioning for actin tail formation.

    Get PDF
    Pathogenic Shigella bacteria are a paradigm to address key issues of cell and infection biology. Polar localisation of the Shigella autotransporter protein IcsA is essential for actin tail formation, which is necessary for the bacterium to travel from cell-to-cell; yet how proteins are targeted to the bacterial cell pole is poorly understood. The bacterial actin homologue MreB has been extensively studied in broth culture using model organisms including Escherichia coli, Bacillus subtilis and Caulobacter crescentus, but has never been visualised in rod-shaped pathogenic bacteria during infection of host cells. Here, using single-cell analysis of intracellular Shigella, we discover that MreB accumulates at the cell pole of bacteria forming actin tails, where it colocalises with IcsA. Pharmacological inhibition of host cell actin polymerisation and genetic deletion of IcsA is used to show, respectively, that localisation of MreB to the cell poles precedes actin tail formation and polar localisation of IcsA. Finally, by exploiting the MreB inhibitors A22 and MP265, we demonstrate that MreB polymerisation can support actin tail formation. We conclude that Shigella MreB promotes polar IcsA positioning for actin tail formation, and suggest that understanding the bacterial cytoskeleton during host-pathogen interactions can inspire development of new therapeutic regimes for infection control.This article has an associated First Person interview with the first author of the paper

    Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence.

    Get PDF
    Funder: Lister Institute of Preventive Medicine; funder-id: http://dx.doi.org/10.13039/501100001255Shigella flexneri is historically regarded as the primary agent of bacillary dysentery, yet the closely-related Shigella sonnei is replacing S. flexneri, especially in developing countries. The underlying reasons for this dramatic shift are mostly unknown. Using a zebrafish (Danio rerio) model of Shigella infection, we discover that S. sonnei is more virulent than S. flexneri in vivo. Whole animal dual-RNAseq and testing of bacterial mutants suggest that S. sonnei virulence depends on its O-antigen oligosaccharide (which is unique among Shigella species). We show in vivo using zebrafish and ex vivo using human neutrophils that S. sonnei O-antigen can mediate neutrophil tolerance. Consistent with this, we demonstrate that O-antigen enables S. sonnei to resist phagolysosome acidification and promotes neutrophil cell death. Chemical inhibition or promotion of phagolysosome maturation respectively decreases and increases neutrophil control of S. sonnei and zebrafish survival. Strikingly, larvae primed with a sublethal dose of S. sonnei are protected against a secondary lethal dose of S. sonnei in an O-antigen-dependent manner, indicating that exposure to O-antigen can train the innate immune system against S. sonnei. Collectively, these findings reveal O-antigen as an important therapeutic target against bacillary dysentery, and may explain the rapidly increasing S. sonnei burden in developing countries

    Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes.

    Get PDF
    The cytoskeleton occupies a central role in cellular immunity by promoting bacterial sensing and antibacterial functions. Septins are cytoskeletal proteins implicated in various cellular processes, including cell division. Septins also assemble into cage-like structures that entrap cytosolic Shigella, yet how septins recognize bacteria is poorly understood. Here, we discover that septins are recruited to regions of micron-scale membrane curvature upon invasion and division by a variety of bacterial species. Cardiolipin, a curvature-specific phospholipid, promotes septin recruitment to highly curved membranes of Shigella, and bacterial mutants lacking cardiolipin exhibit less septin cage entrapment. Chemically inhibiting cell separation to prolong membrane curvature or reducing Shigella cell growth respectively increases and decreases septin cage formation. Once formed, septin cages inhibit Shigella cell division upon recruitment of autophagic and lysosomal machinery. Thus, recognition of dividing bacterial cells by the septin cytoskeleton is a powerful mechanism to restrict the proliferation of intracellular bacterial pathogens

    Mitochondria mediate septin cage assembly to promote autophagy of Shigella.

    Get PDF
    Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria
    corecore