952 research outputs found

    Non-thermal WIMP baryogenesis

    Full text link
    We propose a WIMP baryogensis achieved by the annihilation of non-thermally produced WIMPs from decay of heavy particles, which can result in low reheating temerature. Dark matter (DM) can be produced non-thermally during a reheating period created by the decay of long-lived heavy particle, and subsequently re-annihilate to lighter particles even after the thermal freeze-out. The re-annihilation of DM provides the observed baryon asymmetry as well as the correct relic density of DM. We investigate how wahout effects can affect the generation of the baryon asymmetry and study a model suppressing them. In this scenario, we find that DM can be heavy enough and its annihilation cross section can also be larger than that adopted in the usual thermal WIMP baryogenesis.Comment: 5 pages, 6 figure

    Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

    Get PDF
    We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current(DC) conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study, we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, for small momentum relaxation, the Nernst signal shows a bell-shaped dependence on the magnetic field, which is a feature of the normal phase of cuprates. We compute all alternating current(AC) electric, thermoelectric, and thermal conductivities by numerical analysis and confirm that their zero frequency limits precisely reproduce our analytic DC formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effects on the conductivities including cyclotron resonance poles.Comment: v3: Minor chages, discussions clarified, version accepted in JHE

    Gauge Invariance and Holographic Renormalization

    Full text link
    We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalisation: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry(RGS). By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.Comment: 14 pages, v2: minor changes, typos corrected, references adde

    Four-neutrino analysis of 1.5km-baseline reactor antineutrino oscillations

    Get PDF
    The masses of sterile neutrinos are not yet known, and depending on the orders of magnitudes, their existence may explain reactor anomalies or the spectral shape of reactor neutrino events at 1.5km-baseline detector. Here, we present four-neutrino analysis of the results announced by RENO and Daya Bay, which performed the definitive measurements of θ13\theta_{13} based on the disappearance of reactor antineutrinos at km-order baselines. Our results using 3+1 scheme include the exclusion curve of Δm412\Delta m^2_{41} vs. θ14\theta_{14} and the adjustment of θ13\theta_{13} due to correlation with θ14\theta_{14}. The value of θ13\theta_{13} obtained by RENO and Daya Bay with a three-neutrino oscillation analysis is included in the 1σ1\sigma interval of θ13\theta_{13} allowed by our four-neutrino analysis.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with arXiv:1303.617

    Character of Matter in Holography: Spin-Orbit Interaction

    Get PDF
    Gauge/Gravity duality as a theory of matter needs a systematic way to characterise a system. We suggest a `dimensional lifting' of the least irrelevant interaction to the bulk theory. As an example, we consider the spin-orbit interaction, which causes magneto-electric interaction term. We show that its lifting is an axionic coupling. We present an exact and analytic solution describing diamagnetic response. Experimental data on annealed graphite shows a remarkable similarity to our theoretical result. We also find an analytic formulas of DC transport coefficients, according to which, the anomalous Hall coefficient interpolates between the coherent metallic regime with ρxx2\rho_{xx}^{2} and incoherent metallic regime with ρxx\rho_{xx} as we increase the disorder parameter β\beta. The strength of the spin-orbit interaction also interpolates between the two scaling regimes.Comment: 15pages, 3 figure

    Coherent/incoherent metal transition in a holographic model

    Get PDF
    We study AC electric(σ\sigma), thermoelectric(α\alpha), and thermal(κˉ\bar{\kappa}) conductivities in a holographic model, which is based on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation due to massless scalar fields linear to spatial coordinate. The model has three field theory parameters: temperature(TT), chemical potential(μ\mu), and effective impurity(β\beta). At low frequencies, if β<μ\beta < \mu, all three AC conductivities(σ,α,κˉ\sigma, \alpha, \bar{\kappa}) exhibit a Drude peak modified by pair creation contribution(coherent metal). The parameters of this modified Drude peak are obtained analytically. In particular, if βμ\beta \ll \mu the relaxation time of electric conductivity approaches to 23μ/β22\sqrt{3} \mu/\beta^2 and the modified Drude peak becomes a standard Drude peak. If β>μ\beta > \mu the shape of peak deviates from the Drude form(incoherent metal). At intermediate frequencies(T<ω<μT<\omega<\mu), we have analysed numerical data of three conductivities(σ,α,κˉ\sigma, \alpha, \bar{\kappa}) for a wide variety of parameters, searching for scaling laws, which are expected from either experimental results on cuprates superconductors or some holographic models. In the model we study, we find no clear signs of scaling behaviour.Comment: 27 pages, 9 figures, v2,v3: minor changes, typos corrected, reference adde

    Dense Holographic QCD in the Wigner-Seitz Approximation

    Full text link
    We investigate cold dense matter in the context of Sakai and Sugimoto's holographic model of QCD in the Wigner-Seitz approximation. In bulk, baryons are treated as instantons on S^3\times R^1 in each Wigner-Seitz cell. In holographic QCD, Skyrmions are instanton holonomies along the conformal direction. The high density phase is identified with a crystal of holographic Skyrmions with restored chiral symmetry at about 4 Mkk^3/pi^5. As the average density goes up, it approaches to uniform distribution while the chiral condensate approaches to p-wave over a cell. The chiral symmetry is effectively restored in long wavelength limit since the chiral order parameter is averaged to be zero over a cell. The energy density in dense medium varies as n_B^{5/3}, which is the expected power for non-relativistic fermion. This shows that the Pauli exclusion effect in boundary is encoded in the Coulomb repulsion in the bulk.Comment: 24 pages, 7 figures, references added, minor correction
    corecore