64 research outputs found

    Clean Label in Bread

    Get PDF
    Bread is considered a staple food worldwide, and therefore there is much interest in research around the topic. The bread industry is usually looking for ways to improve its formulations. Therefore, other ingredients such as dough conditioners, crumb softeners, emulsifiers, and surfactants can be added to enhance bread quality. These ingredients perform functions such as helping standardize processes in the industry, reducing dough-mixing time, increasing water absorption, improving bread quality, and extending its shelf life. Consumers are concerned about the effect of these ingredients on their health, and this has increased the popularity of clean-label bread formulations. A clean label generally indicates that a product is free of chemical additives, has an ingredient list that is easy to understand, has undergone natural or limited processing, and/or is organic and free of additives or preservatives. However, there is no scientific definition of the term “clean label.” Researchers have focused on these clean-label initiatives to replace dough strengtheners and preservatives in bread formulations and give consumers what they perceive as a healthier produc

    End-Use Quality of Historical and ModernWinter Wheats Adapted to the Great Plains of the United States

    Get PDF
    Improving milling and baking properties is important during wheat breeding. To determine changes in milling and baking quality of hard winter wheat, 23 adapted cultivars released in the Great Plains between 1870 and 2013 were grown in triplicate in a single location (Mead, NE, USA) over two crop years (2018 and 2019). Grain yield and kernel hardness index increased by release year (p \u3c 0.05). The observed increase in hardness index was accompanied by a decrease in percent soft kernels (p \u3c 0.05). Diameter and weight decreased with release year in 2019 (p \u3c 0.05), and their standard deviation increased with the release year (p \u3c 0.05). Flour protein content decreased with release year (p \u3c 0.05) and dough mixing quality increased (p \u3c 0.05). No significant relationship was found for baking property variables, but bran water retention capacity (BWRC), which is correlated with whole wheat bread quality, increased with release year (p \u3c 0.05). In conclusion, wheat kernels have become harder but more variable in shape over a century of breeding. Mixing quality showed significant improvements, and loaf volume and firmness remained constant, even in the presence of a decrease in protein concentration. Bran quality decreased across release year, which may have implications for whole grain baking quality and milling productivity

    Optimization and Modeling of Flow Characteristics of Low-Oil DDGS Using Regression Techniques

    Get PDF
    Citation: R. Bhadra, R. P. K. Ambrose, M. E. Casada, S. Simsek, K. Siliveru. (2017). Optimization and Modeling of Flow Characteristics of Low-Oil DDGS Using Regression Techniques. Transactions of the ASABE. 60(1): 249-258. (doi: 10.13031/trans.11928)Storage conditions, such as temperature, relative humidity (RH), consolidation pressure (CP), and time, affect the flow behavior of bulk solids such as distillers dried grains with solubles (DDGS), which is widely used as animal feed by the U.S. cattle and swine industries. The typical dry-grind DDGS production process in most corn ethanol plants has been adapted to facilitate oil extraction from DDGS for increased profits, resulting in production of low-oil DDGS. Many studies have shown that caking, and thus flow, of regular DDGS is an issue during handling and transportation. This study measured the dynamic flow properties of low-oil DDGS. Flow properties such as stability index (SI), basic flow energy (BFE), flow rate index (FRI), cohesion, Jenike flow index, and wall friction angle were measured at varying temperature (20°C, 40°C, 60°C), RH (40%, 60%, 80%), moisture content (MC; 8%, 10%, 12% w.b.), CP (generated by 0, 10, and 20 kg overbearing loads), and consolidation time (CT; 2, 4, 6, 8 days) for low-oil DDGS. Response surface modeling (RSM) and multivariate analysis showed that MC, temperature, and RH were the most influential variables on flow properties. The dynamic flow properties as influenced by environmental conditions were modeled using the RSM technique. Partial least squares regression yielded models with R2 values greater than 0.80 for SI, BFE, and cohesion as a function of MC, temperature, RH, CP, and CT using two principal components. These results provide critical information for quantifying and predicting the flow behavior of low-oil DDGS during commercial handling and transportation

    Wheat starch structure–function relationship in breadmaking: A review

    Get PDF
    Bread dough and bread are dispersed systems consisting of starch polymers that interact with other flour components and added ingredients during processing. In addition to gluten proteins, starch impacts the quality characteristics of the final baked product. Wheat starch consists of amylose and amylopectin organized into alternating semicrystalline and amorphous layers in granules that vary in size and are embedded in the endosperm protein matrix. Investigation of the molecular movement of protons in the dough system provides a comprehensive insight into granular swelling and amylose leaching. Starch interacts with water, proteins, amylase, lipids, yeast, and salt during various stages of breadmaking. As a result, the starch polymers within the produced crumb and crust, together with the rate of retrogradation and staling due to structural reorganization, moisture migration, storage temperature, and relative humidity determines the final product's textural perception. This review aims to provide insight into wheat starch composition and functionality and critically review recently published research results with reference to starch structure–function relationship and factors affecting it during dough formation, fermentation, baking, cooling, and storage of bread

    Do ancient wheats contain less gluten than modern bread wheat, in favour of better health?

    Get PDF
    Popular media messaging has led to increased public perception that gluten-containing foods are bad for health. In parallel, ‘ancient grains’ have been promoted with claims that they contain less gluten. There appears to be no clear definition of ‘ancient grains’ but the term usually includes einkorn, emmer, spelt and Khorasan wheat. Gluten is present in all wheat grains and all can induce coeliac disease (CD) in genetically susceptible individuals. Analyses of ‘ancient’ and ‘modern’ wheats show that the protein content of modern bread wheat (Triticum aestivum) has decreased over time while the starch content increased. In addition, it was shown that, compared to bread wheat, ancient wheats contain more protein and gluten and greater contents of many CD-active epitopes. Consequently, no single wheat type can be recommended as better for reducing the risks of or mitigating the severity of CD. An estimated 10% of the population of Western countries suffers from gastrointestinal symptoms that lack a clear organic cause and is often referred to as irritable bowel syndrome (IBS). Many of these patients consider themselves gluten sensitive, but in most cases this is not confirmed when tested in a medical setting. Instead, it may be caused by gas formation due to fermentation of fructans present in wheat or, in some patients, effects of non-gluten proteins. A significant overlap of symptoms with those of CD, IBS and inflammatory bowel disease makes a medical diagnosis a priority. This critical narrative review examines the suggestion that ‘ancient’ wheat types are preferred for health and better tolerance

    Do ancient wheats contain less gluten than modern bread wheat, in favour of better health?

    Get PDF
    Popular media messaging has led to increased public perception that gluten‐containing foods are bad for health. In parallel, ‘ancient grains’ have been promoted with claims that they contain less gluten. There appears to be no clear definition of ‘ancient grains’ but the term usually includes einkorn, emmer, spelt and Khorasan wheat. Gluten is present in all wheat grains and all can induce coeliac disease (CD) in genetically susceptible individuals. Analyses of ‘ancient’ and ‘modern’ wheats show that the protein content of modern bread wheat (Triticum aestivum) has decreased over time while the starch content increased. In addition, it was shown that, compared to bread wheat, ancient wheats contain more protein and gluten and greater contents of many CD‐active epitopes. Consequently, no single wheat type can be recommended as better for reducing the risks of or mitigating the severity of CD. An estimated 10% of the population of Western countries suffers from gastrointestinal symptoms that lack a clear organic cause and is often referred to as irritable bowel syndrome (IBS). Many of these patients consider themselves gluten sensitive, but in most cases this is not confirmed when tested in a medical setting. Instead, it may be caused by gas formation due to fermentation of fructans present in wheat or, in some patients, effects of non‐gluten proteins. A significant overlap of symptoms with those of CD, IBS and inflammatory bowel disease makes a medical diagnosis a priority. This critical narrative review examines the suggestion that ‘ancient’ wheat types are preferred for health and better tolerance

    Genome-Wide Association Mapping for Yield and Related Traits Under Drought Stressed and Non-stressed Environments in Wheat

    Get PDF
    Understanding the genetics of drought tolerance in hard red spring wheat (HRSW) in northern USA is a prerequisite for developing drought-tolerant cultivars for this region. An association mapping (AM) study for drought tolerance in spring wheat in northern USA was undertaken using 361 wheat genotypes and Infinium 90K single-nucleotide polymorphism (SNP) assay. The genotypes were evaluated in nine different locations of North Dakota (ND) for plant height (PH), days to heading (DH), yield (YLD), test weight (TW), and thousand kernel weight (TKW) under rain-fed conditions. Rainfall data and soil type of the locations were used to assess drought conditions. A mixed linear model (MLM), which accounts for population structure and kinship (PC+K), was used for marker–trait association. A total of 69 consistent QTL involved with drought tolerance-related traits were identified, with p ≀ 0.001. Chromosomes 1A, 3A, 3B, 4B, 4D, 5B, 6A, and 6B were identified to harbor major QTL for drought tolerance. Six potential novel QTL were identified on chromosomes 3D, 4A, 5B, 7A, and 7B. The novel QTL were identified for DH, PH, and TKW. The findings of this study can be used in marker-assisted selection (MAS) for drought-tolerance breeding in spring wheat

    Host specificity in Medicago-Sinorhizobium interactions: Structural characterization of symbiotically significant LMW-EPS from Sinorhizobium meliloti

    No full text
    Rhizobium, Bradyrhizobium, and Sinorhizobium (rhizobia) may bring about the formation of root nodules on leguminous host plants, in which they reduce dinitrogen to ammonia in a symbiotic relationship with specific legume plants and molecular signals are included in the establishment of nitrogen-fixing nodules on the legume roots. For example, bacterial exopolysaccharides (EPS) and K antigens promote the infection of alfalfa by Sinorhizobium meliloti. This study focused on ecotype-strain specificity in Medicago truncatula-S. meliloti interactions: Specific strains of S. meliloti infect M. truncatula ecotype A17 (compatible), but fail to establish nitrogen-fixing nodules on ecotype A20 at 28 days post infection (incompatible). Importantly, the phenotypes are reversed with other S. meliloti strains. The first part of the study demonstrated the following: incompatibility is not a consequence of an avirulence factor or Nod factor activity; there is structural variability in the succinoglycan oligosaccharide populations between S. meliloti strains; the structural nature of the succinoglycan oligosaccharides is correlated to compatibility; and most importantly, that an S. meliloti Rm41 derivative, carrying exo genes from an M. truncatula A17-compatible strain, produced a modified population of succinoglycan oligosaccharides and conferred A17-compatibility to strain Rm41. Thus, a host-plant structural requirement for succinoglycan activity determines compatibility in M. truncatula-S. meliloti interactions. The second part of the study involved the analysis of succinoglycan oligosaccharide production by each strain to determine if the biologically active oligosaccharides result from specific biosynthesis rather than the random assembly of available precursors. The analysis of the S. meliloti NRG247 oligosaccharides showed that the biosynthesis of the oligosaccharides is not a random polymerization of the monomer population. The last part of the study examined whether there is an altered pattern of oligosaccharide substitution or size range upon exposure of S. meliloti NRG185 to a plant signal, apigenin. There was a significant decrease in the production of the active trimer within the trimer population. This would effectively turn off this signal system after infection has begun

    Preparation and Characterization of Inclusion Complexes of ÎČ-Cyclodextrin and Phenolics from Wheat Bran by Combination of Experimental and Computational Techniques

    No full text
    Bitterness often associated with whole wheat products may be related to phenolics in the bran. Cyclodextrins (CDs) are known to form inclusion complexes. The objective was to form inclusion complexes between β-CD and wheat phenolics. Pure phenolic acids (trans-ferulic acid (FA), caffeic acid (CA), and p-coumaric acid (CO)) and phenolic acids from wheat bran were used to investigate complex formation potential. Complexes were characterized by spectroscopy techniques, and a computational and molecular modeling study was carried out. The relative amount of complex formation between β-CD and wheat bran extract was CA > CO > FA. The phenolic compounds formed inclusion complexes with β-CDs by non-covalent bonds. The quantum-mechanical calculations supported the experimental results. The most stable complex was CO/β-CD complex. The ΔH value for CO/β-CD complex was −11.72 kcal/mol and was about 3 kcal/mol more stable than the other complexes. The QSPR model showed good correlation between binding energy and 1H NMR shift for the H5 signal. This research shows that phenolics and β-CD inclusion complexes could be utilized to improve the perception of whole meal food products since inclusion complexes have the potential to mask the bitter flavor and enhance the stability of the phenolics in wheat bran
    • 

    corecore