5,278 research outputs found

    Biaxial fatigue loading of notched composites

    Get PDF
    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good

    Nonlinear Robust Observer Design Using An Invariant Manifold Approach

    Get PDF
    This paper presents a method to design a reduced order observer using an invariant manifold approach. The main advantages of this method are that it enables a systematic design approach, and (unlike most nonlinear observer design methods), it can be generalized over a larger class of nonlinear systems. The method uses specific mapping functions in a way that minimises the error dynamics close to zero. Another important aspect is the robustness property which is due to the manifold attractivity: an important feature when an observer is used in a closed loop control system. A two degree-of-freedom system is used as an example. The observer design is validated using numerical simulation. Then experimental validation is carried out using hardware-in-the-loop testing. The proposed observer is then compared with a very well known nonlinear observer based on the off-line solution of the Riccati equation for systems with Lipschitz type nonlinearity. In all cases, the performance of the proposed observer is shown to be very high

    Antibodies to acetylcholine receptor in parous women with myasthenia: evidence for immunization by fetal antigen

    Get PDF
    The weakness in myasthenia gravis (MG) is mediated by autoantibodies against adult muscle acetylcholine receptors (AChR) at the neuromuscular junction; most of these antibodies also bind to fetal AChR, which is present in the thymus. In rare cases, babies of mothers with MG, or even of asymptomatic mothers, develop a severe developmental condition, arthrogryposis multiplex congenita, caused by antibodies that inhibit the ion channel function of the fetal AChR while not affecting the adult AChR. Here we show that these fetal AChR inhibitory antibodies are significantly more common in females sampled after pregnancy than in those who present before pregnancy, suggesting that they may be induced by the fetus. Moreover, we were able to clone high-affinity combinatorial Fab antibodies from thymic cells of two mothers with MG who had babies with arthrogryposis multiplex congenita. These Fabs were highly specific for fetal AChR and did not bind the main immunogenic region that is common to fetal and adult AChR. The Fabs show strong biases to VH3 heavy chains and to a single Vk1 light chain in one mother. Nevertheless, they each show extensive intraclonal diversification from a highly mutated consensus sequence, consistent with antigen-driven selection in successive steps. Collectively, our results suggest that, in some cases of MG, initial immunization against fetal AChR is followed by diversification and expansion of B cells in the thymus; maternal autoimmunity will result if the immune response spreads to the main immunogenic region and other epitopes common to fetal and adult AChR

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    Magnetorheological landing gear: 2. Validation using experimental data

    Get PDF
    Aircraft landing gears are subjected to a wide range of excitation conditions with conflicting damping requirements. A novel solution to this problem is to implement semi-active damping using magnetorheological (MR) fluids. In part 1 of this contribution, a methodology was developed that enables the geometry of a flow mode MR valve to be optimized within the constraints of an existing passive landing gear. The device was designed to be optimal in terms of its impact performance, which was demonstrated using numerical simulations of the complete landing gear system. To perform the simulations, assumptions were made regarding some of the parameters used in the MR shock strut model. In particular, the MR fluid's yield stress, viscosity, and bulk modulus properties were not known accurately. Therefore, the present contribution aims to validate these parameters experimentally, via the manufacture and testing of an MR shock strut. The gas exponent, which is used to model the shock strut's nonlinear stiffness, is also investigated. In general, it is shown that MR fluid property data at high shear rates are required in order to accurately predict performance prior to device manufacture. Furthermore, the study illustrates how fluid compressibility can have a significant influence on the device time constant, and hence on potential control strategies

    Pipeline network features and leak detection by cross-correlation analysis of reflected waves

    Get PDF
    This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave

    Oceanic adults, coastal juveniles: tracking the habitat use of whale sharks off the Pacific coast of Mexico

    Get PDF
    Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14–134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity

    James J. Kaput (1942–2005) imagineer and futurologist of mathematics education

    Get PDF
    Jim Kaput lived a full life in mathematics education and we have many reasons to be grateful to him, not only for his vision of the use of technology in mathematics, but also for his fundamental humanity. This paper considers the origins of his ‘big ideas’ as he lived through the most amazing innovations in technology that have changed our lives more in a generation than in many centuries before. His vision continues as is exemplified by the collected papers in this tribute to his life and work

    Developing a user informed training package for mentoring people on the autism spectrum

    Get PDF
    In light of the limited evidence-base and the criticisms of existing guidance, a two-year pilot study was funded by Research Autism to establish a mentoring scheme, designed with input from people on the autism spectrum and their families and supporters. The impact of the scheme in improving the wellbeing of adults on the spectrum will be rigorously examined. The Project was granted ethical approval by London South Bank University Research Ethics Committee (approval number UREC 1469) in March 2015
    • 

    corecore